Skip to main content
Log in

Isolation and Characterization of Novel β-Cyanoalanine Synthase and Cysteine Synthase Genes from Cassava

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Cassava is an important staple food crop, feeding 600 million people worldwide, which produce cyanogenic glycosides. Cyanogenic glycosides in cassava are known to act as a deterrent for herbivores as well as serve as a mobile source of reduced nitrogen. Cassava is also equipped with a cyanide detoxification pathway, mediated by β-cyanoalanine synthase (β-CAS) which converts cyanide into asparagine. β-CAS, belonging to the Bsas family of enzymes, is multi functional and shares sequence homology with cysteine synthase (CS). Using rapid amplification of cDNA end-polymerase chain reaction (RACE-PCR), two cDNA sequences were isolated from cassava. The two clones named MANes;BsasA (accession no. EU350583) and MANes;BsasB (accession no. HQ257219), showed high homology to known β-CAS enzymes (80% and 75% amino acid similarity to Arabidopsis and 76% and 82% similarity to spinach, respectively). The kinetic properties of the two clones were characterized in a Escherichia coli NK3 mutant strain which lacks activity for any of the Bsas proteins. Kinetic studies showed that MANes;BsasB is a β-CAS with a CAS/CS activity ratio of 72 while MANes;BsasA is a CS showing bifunctional capabilities and with a CAS/CS activity ratio of 11. The isolation of cassava β-CAS and CS genes reported here paves the way for their utilization in genetically enhancing the cyanide detoxification potential of cassava and/or increase of the essential amino acid cysteine, which has been found to be low in nutritionally compromised individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aregheore EM, Agunbiade OO (1991) The toxic effects of cassava (Manihot esculenta Crantz) diets on humans: a review. Vet Hum Toxicol 33:274–275

    PubMed  CAS  Google Scholar 

  • Bradford M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  Google Scholar 

  • Elias M, Sudhakaran P, Nambisan B (1997) Purification and characterization of β-cyanoalanine synthase from cassava tissues. Phytochemistry 46:469–472

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, Von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    PubMed  CAS  Google Scholar 

  • Hasegawa R, Tomoko T, Yuichiro T, Yohji E (1994) Presence of β-cyanoalanine synthase in unimbibed dry seeds and its activation by ethylene during pregermination. Physiol Plant 91:141–146

    Article  CAS  Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123:1163–1171

    Article  PubMed  CAS  Google Scholar 

  • Hegg C, Kruse C, Jost R, Gutensohn M, Ruppert T, Wirtz M, Hell R (2008) Analysis of the Arabidopsis O-acetylserine(thiol)lyase gene family demonstrates compartment-specific differences in the regulation of cysteine synthesis. Plant Cell 20:168–185

    Article  Google Scholar 

  • Hell R, Bork C, Bogdanova N, Frolov I, Hauschild R (1994) Isolation and characterization of two cDNAs encoding for compartment specific isoforms of O-acetylserine (thiol) lyase from Arabidopsis thaliana. FEBS Lett 351:257–262

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Höfgen R (1998) Isolation of cDNAs encoding cytosolic (accession no. AF044172) and plastidic (accession no. AF044173) Cys synthase isoforms from Solanum tuberosum. Plant Physiol 116:1604

    Google Scholar 

  • Hughes J, Carvalho F, Hughes M (1994) Purification, characterization and cloning of hydroxynitrile lyase from cassava (Manihot esculenta Crantz). Arch Biochem Biophys 311:496–502

    Article  PubMed  CAS  Google Scholar 

  • Hulanicka MD, Garret C, Jagura-Burdzy G, Kredich NM (1986) Cloning and characterization of the cysAMK region of Salmonella typhimurium. J Bacteriol 168:322–327

    PubMed  CAS  Google Scholar 

  • Ikegami F, Murakoshi I (1994) Enzymic synthesis of non-protein β-substituted alanines and some higher homologues in plants. Phytochemistry 35:1089–1104

    Article  CAS  Google Scholar 

  • Ikegami F, Kaneko M, Kamiyama H, Murakoshi I (1988) Purification and characterization of cysteine synthases from Citrullus vulgaris. Phytochemistry 27:697–701

    Article  CAS  Google Scholar 

  • Ikegami F, Takayama K, Murakoshi I (1989a) Purification and properties of β-cyano-l-alanine synthase from Lathyrus latifolius. Phytochemistry 27:3385–3389

    Article  Google Scholar 

  • Ikegami F, Takayama K, Kurihara T, Horiuchi S, Tajima C, Shira R, Murakoshi I (1989b) Purification and properties of β-cyano-l-alanine synthase from Vicia angustifolia. Phytochemistry 28:2285–2291

    Article  CAS  Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R (2000) Genomic and functional characterization of the OAS gene family encoding O-acetylserine(thiol)lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247

    Article  PubMed  CAS  Google Scholar 

  • Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35 (webserver issue):May 25

  • Koch B, Nielsen VS, Halkier BA, Olsen CE, Møller BL (1992) The biosynthesis of cyanogenic glycosides in seedlings of cassava (Manihot esculenta Crantz). Arch Biochem Biophys 292:141–150

    Article  PubMed  CAS  Google Scholar 

  • López C, Jorge V, Piégu B, Mba C, Cortes D, Restrepo S, Soto M, Laudié M, Berger C, Cooke R, Delseny M, Tohme J, Verdier V (2004) A unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol 56:541–554

    Article  PubMed  Google Scholar 

  • Lunn JE, Droux M, Martin J, Douce R (1990) Localization of ATP sulfurylase and Oacetylserine(thiol)lyase in spinach leaves. Plant Physiol 94:1345–1352

    Article  PubMed  CAS  Google Scholar 

  • Maruyama A, Ishizawa K, Takaqi T (2000) Purification and characterization of beta-cyanoalanine synthase and cysteine synthases from potato tubers: are beta-cyanoalanine synthase and mitochondrial cysteine synthase same enzyme? Plant Cell Physiol 41:200–208

    PubMed  CAS  Google Scholar 

  • Maruyama A, Saito K, Ishizawa K (2001) β-Cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Mol Biol 46:749–760

    Article  PubMed  CAS  Google Scholar 

  • McMahon J, White W, Sayre R (1995) Cyanogenesis in cassava (Manihot esculenta Crantz). J Exp Bot 46:731–741

    Article  CAS  Google Scholar 

  • Morant AV, Jørgensen K, Jørgensen B, Dam W, Olsen CE, Møller BL, Bak S (2007) Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics 3:383–398

    Article  CAS  Google Scholar 

  • Nartey F (1969) Studies on cassava, Manihot utilissima: II. Biosynthesis of asparagine-14C from 14C-labelled hydrogen cyanide and its relations with cyanogenesis. Physiol Plant 22:1085–1096

    Article  CAS  Google Scholar 

  • Poulton J (1990) Cyanogenesis in plants. Plant Physiol 94:401–405

    Article  PubMed  CAS  Google Scholar 

  • Ramanujam T, Indira P (1984) Effect of girdling on the distribution of total carbohydrates and hydrocyanic acid in cassava. Indian J Plant Physiol 27:355–360

    CAS  Google Scholar 

  • Rozen S, Skaletsky H (1998) Primer3. Code available at http://www.genome.wi.mit.edu/genome_software/other/primer3.html. Accessed 21 Sept 2010

  • Selmar D (1993) Transport of cyanogenic glucosides: linustatin uptake in Hevea cotyledons. Planta 191:191–199

    Article  Google Scholar 

  • Siritunga D, Sayre R (2003) Generation of cyanogen-free transgenic cassava. Planta 217:367–373

    Article  PubMed  CAS  Google Scholar 

  • Siritunga D, Sayre R (2004) Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Plant Mol Biol 56:661–669

    Article  PubMed  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Inc., Sunderland, pp 272–275

    Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    Article  PubMed  CAS  Google Scholar 

  • Warrillow A, Hawkesford M (1998) Separation, subcellular location and influence of sulphur nutrition on isoforms of cysteine synthase in spinach. J Exp Bot 49:1625–1636

    Article  Google Scholar 

  • Warrillow A, Hawkesford M (2000) Cysteine synthase (O-acetylserine (thiol) lyase) substrate specificities classify the mitochondrial isoform as a cyanoalanine synthase. J Exp Bot 51:985–993

    Article  Google Scholar 

  • Watanabe M, Kusano M, Oikawa A, Kukushima A, Noji M, Saito K (2007) Physiological roles of the β-substituted alanine synthase gene family in Arabidopsis. Plant Physiol 146:310–320

    Article  PubMed  Google Scholar 

  • Watanabe M, Mochida K, Kato T, Tabata S, Yoshimoto N, Noji M, Saito K (2008) Comparative genomics and reverse genetics analysis reveal indispensable functions of the serine acetyltransferase gene family in Arabidopsis. Plant Cell 20:2484–2496

    Article  PubMed  CAS  Google Scholar 

  • White W, McMahon J, Sayre R (1994) Regulation of cyanogenesis in cassava. Acta Hortic 375:69–77

    CAS  Google Scholar 

  • Wirtz M, Droux M, Hell R (2004) O-acetylserine (thiol) lyase: an enigmatic enzyme of plant Cys biosynthesis revisited in Arabidopsis thaliana. J Exp Bot 55:1785–1798

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and beta-cyanoalanine synthase. Plant Cell Physiol 41:465–476

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Kazuki Saito (Chiba University, Chiba, Japan) for providing the NK3 strain and the A. thaliana β-CAS full-length clone used in this study. Special thanks also to Dr. Timothy Porch (USDA-Tropical Agriculture Research Station, Mayaguez, PR, USA) and Dr. Argelia Lawrence (Arkansas State University, Jonesboro, AR, USA) for their critical review of this manuscript. This study was funded by grant to DS from the Research Initiation Program of the National Science Foundation (award number IOS 0641084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimuth Siritunga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrero-Degro, J., Marcano-Velázquez, J. & Siritunga, D. Isolation and Characterization of Novel β-Cyanoalanine Synthase and Cysteine Synthase Genes from Cassava. Plant Mol Biol Rep 29, 514–524 (2011). https://doi.org/10.1007/s11105-010-0255-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0255-4

Keywords

Navigation