Skip to main content
Log in

Identification of Differentially Expressed Sequence Tags in Rapidly Elongating Phyllostachys pubescens Internodes by Suppressive Subtractive Hybridization

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Bamboo shoots grow quickly through the rapid elongation of internodes, but the precise molecular mechanisms underlying this process remain unknown. We used a combination of suppressive subtractive hybridization (SSH), dot blotting, sequencing and bioinformatics to identify Phyllostachys pubescens genes that are differentially expressed in rapidly elongating vs. static internodes (SIs). We isolated 1020 expressed sequence tags (ESTs) by SSH, 173 of which were shown to be differentially expressed by dot blotting. We then sequenced the 20 ESTs showing the greatest difference in expression, 13 of which were preferentially expressed in elongating internodes and seven in SIs. Functional characterization of the ESTs showed that rapid internode elongation requires meristem initiation and proliferation, high-level protein synthesis, cellular respiration, and cell wall synthesis, as well as the regulation of the activated methyl cycle, gibberellin and brassinosteroid biosynthesis, and their signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SSH:

suppressive subtractive hybridization

ESTs:

expressed sequence tags

HD-Zip:

homeodomain leucine zipper

SNAREs:

soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors

ASK:

shaggy-related protein kinase

SAHH:

S-adenosyl-l-homocysteine hydrolase

REIs:

rapidly elongating internodes

SIs:

static internodes

References

  • Azuma T, Mihara F, Uchida N, Yasuda T, Yamaguchi T (1990) Plant hormonal regulation of internodal elongation of floating rice stem sections. Jpn J Trop Agr 34:271–275

    CAS  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chiu WB, Lin CH, Chang CJ, Hsieh MH, Wang AY (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol 170:53–63

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Ann Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  Google Scholar 

  • Dransfield S, Widjaja EA (1995) Plant resources of south-east Asia No. 7 Bamboos. Backhuys Publishers, Leiden

    Google Scholar 

  • Fu J (2001) Chinese moso bamboo: its importance. Bamboo 22:5–7

    Google Scholar 

  • Isagi Y, Kawahara T, Kamo K, Ito H (1997) Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol 130:41–52

    Article  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Ko JH, Prassinos C, Han K-H (2005) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169:469–478

    Article  Google Scholar 

  • Li J, Nam KH (2002) Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295:1299–1301

    CAS  PubMed  Google Scholar 

  • Li R, Zhong ZC, Werger MJA (1997) Studies on the dynamics of the bamboo shoots in Phyllostachys pubescens. Acta Phytoecol Sin 21:53–59

    Google Scholar 

  • Liese W, Weiner G (1995) Ageing of bamboo culms. A review. Wood Sci Technol 30:77–89

    Article  Google Scholar 

  • Lin WC (1958) Studies on the growth of bamboo species in Taiwan. Taiwan For Exp Inst Rep No. 248, Taibei

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-Ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174

    Article  CAS  PubMed  Google Scholar 

  • Lutziger I, Oliver DJ (2001) Characterization of two cDNAs encoding mitochondrial lipoamide dehydrogenase from Arabidopsis. Plant Physiol 127:615–623

    Article  CAS  PubMed  Google Scholar 

  • Martin GG (1988) Cell growth in the maize stem. Botany 45:35–39

    Google Scholar 

  • Matsui T, Bhowmik PK, Yokozeki K (2004) A cDNA sequence encoding actin gene in moso bamboo shoot and its phylogenetic analysis. Asian J Plant Sci 3:128–131

    Article  Google Scholar 

  • Morrison TA, Kessler JR, Buxton DR (1994) Maize internode elongation patterns. Crop Sci 34:1055–1060

    Article  Google Scholar 

  • Mortensen UH, Olesen K, Breddam K (1999) Carboxypeptidase C including carboxypeptidase. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, vol 132. Academic Press, London, pp 389–393

    Google Scholar 

  • Ohashi-Ito K, Kubo M, Demura T, Fukuda H (2005) Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Okahisa Y, Yoshimur T, Imamura Y (2006) Seasonal and height-dependent fluctuation of starch and free glucose contents in moso bamboo (Phyllostachys pubescens) and its relation to attack by termites and decay fungi. J Wood Sci 52:445–451

    Article  CAS  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) “Green Revolution” genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Peng HZ, Lin EP, Sang QI, Yao S, Jin YQ, Hua XQ, Zhu MY (2007) Molecular cloning, expression analyses and primary evolution studies of REV- and TB1-like genes in bamboo. Tree Physiol 27:1273–1281

    CAS  PubMed  Google Scholar 

  • Pimenta LMJ, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8:281–290

    Article  Google Scholar 

  • Remington SJ, Breddam K (1994) Carboxypeptidases C and D. Methods Enzymol 244:231–248

    Article  CAS  PubMed  Google Scholar 

  • Sauter M, Mekhedov SL, Kende H (1995) Gibberellin promotes histone H1 kinase activity and the expression of cdc2 and cyclin genes during the induction of rapid growth in deepwater rice internodes. Plant J 7:623–632

    Article  CAS  PubMed  Google Scholar 

  • Schultz DJ, Craig R, Cox-Foster DL, Mumma RO, Medford JI (1994) RNA isolation from recalcitrant plant tissue. Plant Mol Biol Report 12:310–316

    Article  CAS  Google Scholar 

  • Shu S, Mahadeo DC, Liu X, Liu WL, Parent CA, Korn ED (2006) S-Adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration. Proc Natl Acad Sci USA 103:19788–19793

    Article  CAS  PubMed  Google Scholar 

  • Soderstrom TR, Ellis RP (1987) The position of bamboo genera and allies in a system of grass classification. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institution Press, Washington DC, pp 225–238

    Google Scholar 

  • Stiefel V, Ruiz-Avila L, Raz R, Vallés MP, Gómez J, Pagés M, Martínez-Izquierdo JA, Ludevid MD, Langdale JA, Nelson T, Puigdomènech P (1990) Expression of a maize cell wall hydroxyproline-rich glycoprotein gene in early leaf and root vascular differentiation. Plant Cell 2:785–793

    Article  CAS  PubMed  Google Scholar 

  • Suge H (1985) Ethylene and gibberellin: regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol 26:607–614

    CAS  Google Scholar 

  • Sutter JU, Campanoni PA, Blatt MR, Paneque M (2006) Setting SNAREs in a different wood. Traffic 7:627–638

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Masuta C, Uehara K, Kataoka J, Koiwai A, Noma M (1997) Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-l-homocysteine hydrolase gene. Plant Mol Biol 35:981–986

    Article  CAS  PubMed  Google Scholar 

  • Tang D-Q (2009) Genomic sequencing and its application for biological and evolutional research in bamboo. Bamboo J 26:1–10

    Google Scholar 

  • Ueda K (1960) Studies on the physiology of bamboo, with reference to practical application. Bulletin Kyoto Univ Forests 30:1–169

    Google Scholar 

  • Vettakkorumakankav N, Patel MS (1996) Dihydrolipoamide dehydrogenase: structural and mechanistic aspects. Indian J Biochem Biophys 33:168–176

    CAS  PubMed  Google Scholar 

  • Wang K, Peng H, Lin E, Jin Q, Hua X, Yao S, Bian H, Han N, Pan J, Wang J, Deng M, Zhu M (2010) Identification of genes related to the development of bamboo rhizome bud. J Exp Bot 61:551–561

    Article  CAS  PubMed  Google Scholar 

  • Williams CH Jr (1992) Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase: a family of flavoenzyme transhydrogenases. In: Mueller F (ed) Chemistry and biochemistry of flavoenzymes, vol 3. CRC Press, Boca Raton, FL, pp 121–211

    Google Scholar 

  • Zheng HY, Bednarek YS, Sanderfoot AA, Alonso J, Ecker JR, Raikhel NV (2002) NPSN11 is a cell plate-associated SNARE protein that interacts with the syntax in KNOLLE. Plant Physiol 129:530–539

    Article  CAS  PubMed  Google Scholar 

  • Zhong R, Ye ZH (1999) IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain–leucine zipper protein. Plant Cell 11:2139–2152

    Article  CAS  PubMed  Google Scholar 

  • Zhou HL, He SJ, Cao YR, Chen T, Du BX, Chu CC, Zhang JS, Chen SY (2006) OsGLU1, a putative membrane-bound endo-1, 4-β-d-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60:137–151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a special grant from the National Natural Science Foundation of China (no. 30371181) and the Natural Science Foundation of Zhejiang Province (nos. Y3080002 and R303420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Qin Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Mb., Yang, P., Gao, Pj. et al. Identification of Differentially Expressed Sequence Tags in Rapidly Elongating Phyllostachys pubescens Internodes by Suppressive Subtractive Hybridization. Plant Mol Biol Rep 29, 224–231 (2011). https://doi.org/10.1007/s11105-010-0222-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0222-0

Keywords

Navigation