Skip to main content
Log in

Comparative Assessment of SSR and AFLP Markers for Evaluation of Genetic Diversity and Conservation of Fig, Ficus carica L., Genetic Resources in Tunisia

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript


This study characterises the genetic variability of fig, Ficus carica L., using simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers. It compares the efficiency and utility of the two techniques in detecting variation and establishing genetic relationships among Tunisian fig cultivars. Our results show that using both marker systems, the Tunisian fig germ plasm is characterised by having a large genetic diversity at the deoxyribonucleic acid level, as most of AFLP bands were detected and all SSR markers were polymorphic. In fact, 351 (342 polymorphic) and 57 (57 polymorphic) bands were detected using AFLP and SSR primers, respectively. SSR markers were the most polymorphic with an average polymorphic information content value of 0.94, while AFLP markers showed the highest effective multiplex ratio (56.9) and marker index (45.2). The effective marker index was recorded highest (4.19) for AFLP markers and lowest (0.70) for the SSR ones. Our results demonstrate that (1) independent as well as combined analyses of cluster analyses of SSR and AFLP fragments showed that cultivars are clustered independently from their geographical origin, horticultural classifications and tree sex; (2) the analysis of molecular variance allowed the partitioning of genetic variation within and among fig groups and showed greater variation within groups and (3) AFLP and SSR markers datasets showed positive correlation. This study suggests the SSR and AFLP markers are suitable for diversity analysis and cultivars fingerprinting. An understanding of the genetic diversity and population structure of F. carica in Tunisia can also provide insight into the conservation and management of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others



Simple sequence repeat


Amplified fragment length polymorphism


Random amplified polymorphic DNA


Inter simple sequence repeats


Randomly amplified microsatellite polymorphism


Restriction fragment length polymorphism


Internal transcribed spacer

E :

Effective multiplex ratio


Effective marker index


Marker index

n :

Multiplex ratio


Qualitative nature of data


Documentation capability


Quality of marker


Percent reproducibility


Polymorphic information content


Deoxyribonucleic acid


Polymerase chain reaction


Unweighted pair group method with the arithmetic averaging algorithm


Principal component analysis


Analysis of molecular variance


  • Baraket G, Saddoud O, Chatti K, Mars M, Marrakchi M, Trifi M, Salhi Hannachi A (2009a) Sequence analysis of the internal transcribed spacers (ITS) region of the nuclear ribosomal DNA (nrDNA) in fig cultivars (Ficus carica L.). Sci Hortic 120:34–40

    Article  CAS  Google Scholar 

  • Baraket G, Chatti K, Saddoud O, Mars M, Marrakchi M, Salhi TM, Hannachi A (2009b) Genetic analysis of Tunisian fig (Ficus carica L.) cultivars using amplified fragment length polymorphism (AFLP) markers. Sci Hortic 120:487–492

    Article  CAS  Google Scholar 

  • Barker JHA, Matthes M, Arnold GM, Edwards KJ, Ahman I, Larsson S, Karp A (1999) Characterisation of genetic diversity in potential biomass willows (Salix spp.) by RAPD and AFLP analyses. Genome 42:173–183

    Article  CAS  PubMed  Google Scholar 

  • Cabrita LF, Aksoy U, Hepaksoy S, Leitao JM (2001) Suitability of isozyme, RAPD and AFLP markers to assess genetic differences and relatedness among fig (Ficus carica L.) clones. Sci Hort 87(4):261–273

    Article  CAS  Google Scholar 

  • Cai Q, Aitken KS, Fan YH, Piperidis G, Jackson P, McIntyre CL (2005) A preliminary assessment of the genetic relationship between Erianthus rockii and the “Saccharum complex” using microsatellite (SSR) and AFLP markers. Plant Sci 169:976–984

    Article  CAS  Google Scholar 

  • Chatti K, Salhi Hannachi A, Mars M, Marrakchi M, Trifi M (2004a) Analyse de la diversité génétique de cultivars tunisiens de figuier (Ficus carica L.) à l’aide de caractères morphologiques. Fruits 59:49–61

    Article  Google Scholar 

  • Chatti K, Salhi Hannachi A, Mars M, Marrakchi M, Trifi M (2004b) Genetic diversity and phylogenic relationships in Tunisian fig (Ficus carica L.) cultivars mediated by RAPD. Biol Tunis 1(2):1–4

    Google Scholar 

  • Chatti K, Saddoud O, Salhi Hannachi A, Mars M, Marrakchi M, Trifi M (2007) Inferring of genetic diversity and relationships in a Tunisian fig (Ficus carica L.) germplasm collection by random amplified microsatellite polymorphisms. J Int Plant Biol 49(3):386–391

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Excoffier L (1993) Analysis of molecular variance. Version 1.5.5. Genetics and Biometry Laboratory, University of Geneva, Geneva

    Google Scholar 

  • Felsenstein J (1995) PHYLIP (Phylogeny Interference Package) ver. 3,5 c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Goulao L, Cabrita L, Oliveira CM, Leitao JM (2001) Comparing RAPD and AFLP analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119:259–270

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Avise JC, Hamrick JL (eds) Conservation genetics. Chapman and Hall, New York, pp 281–304

    Google Scholar 

  • Hedfi J, Trifi M, Salhi Hannachi A, Ould Mohamed Salem A, Marrakchi M (2003) Morphological and isoenzymatic polymorphism in Tunisian fig (Ficus carica L.) collection. Acta Horticulturae 605:319–325

    Google Scholar 

  • Ikegami H, Nogata H, Hirashima K, Awamura M, Nakahara T (2008) Analysis of genetic diversity among European and Asian fig varieties (Ficus carica L.) using ISSR, RAPD, and SSR markers. Genet Resour Crop Evol. doi:10.1007/S10722-008-9355-5

    Google Scholar 

  • Khadari B, Hochu I, Santoni S, Kjellberg F (2001) Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Mol Ecol Notes 1:191–193

    Article  CAS  Google Scholar 

  • Lefebvre V, Goffinet B, Chauvet JC, Caromel B, Signoret P, Brand R, Palloix A (2001) Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: comparison of AFLP, RAPD and phenotypic data. Theor Appl Genet 102:741–750

    Article  CAS  Google Scholar 

  • Lynch M, Walsh JB (1998) Genetics and analysis of quantitative traits. Sinauer Assocs., Inc., Sunderland

    Google Scholar 

  • Machado CA, Jousselin E, Kjellberg F, Compton SG, Herre EA (2001) Phylogenetic relationships, historical biogeography and character evolution of fig pollinating wasps. Proc Royal Soc London Biol Sci 268:7–10

    Google Scholar 

  • Mars M, Marrakchi M (1998) Conservation et valorisation des ressources génétiques du grenadier (Punica granatum L.) en Tunisie. Plant Genet Resour Newsl 114:35–39

    Google Scholar 

  • Mars M, Chatti K, Saddoud O, Salhi Hannachi A, Trifi M, Marrakchi M (2008) Fig cultivation and genetic ressources in Tunisia, an overview. Proc. IIIrd IS on fig. Acta Horticulturae 798:27–32

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical models for studying genetic variation in terms of restriction endonucléases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pejic I, Ajmone Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rafalski A (2002) Application of single nucleotide polymorphsims in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Ridout CJ, Donini P (1999) Use of AFLP in cereal research. Trends Plant Sci 4:76–79

    Article  PubMed  Google Scholar 

  • Russel JR, Fuller JD, Macaulay M, Hatz BGB, Jahoor A, Powell W, Waugh R (1997) Direct comparisons of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722

    Article  Google Scholar 

  • Saddoud O, Salhi Hannachi A, Chatti K, Rhouma A, Mars M, Marrakchi M, Trifi M (2005) Tunisian Fig (Ficus carica L.) genetic diversity and cultivars identification mediated by microsatellites markers. Fruits 60(2):143–153

    Article  CAS  Google Scholar 

  • Saddoud O, Chatti K, Salhi Hannachi A, Mars M, Rhouma A, Marrakchi M, Trifi M (2007) Genetic diversity of Tunisian figs (Ficus carica L.) as revealed by nuclear microsatellites. Hereditas 144:149–157

    Article  CAS  PubMed  Google Scholar 

  • Saddoud O, Baraket G, Chatti K, Trifi M, Marrakchi M, Salhi Hannachi A, Mars M (2008) Morphological variability of fig (Ficus carica L.) cultivars. Int J Fruit Sci 8:35–51

    Article  Google Scholar 

  • Sadhu MK (1990) Fig. In: Kose TK, Mitra SK (eds) Fruits: tropical and subtropical. Naya Prokash, Calcutta, pp 650–663

    Google Scholar 

  • Salhi Hannachi A, Mars M, Chatti K, Marrakchi M, Trifi M (2003) Specific genetic markers for Tunisian fig germplasm: evidence of morphological traits, random amplified polymorphic DNA and inter simple sequence repeats markers. J Genet Breed 5:125–136

    Google Scholar 

  • Salhi Hannachi A, Trifi M, Zehdi S, Mars M, Rhouma A, Marrakchi M (2004) Inter simple sequence repeat fingerprintings to assess genetic diversity in Tunisian fig (Ficus carica L.). Genet Res Crop Evol 51(3):269–275

    Article  CAS  Google Scholar 

  • Salhi Hannachi A, Chatti K, Mars M, Marrakchi M, Trifi M (2005) Comparative analysis of genetic diversity in two collections figs cultivars based on random amplified polymorphic DNA and inter simple sequence repeats fingerprints. Genet Res Crop Evol 52(5):563–573

    Article  Google Scholar 

  • Salhi Hannachi A, Chatti K, Saddoud O, Mars M, Rhouma A, Marrakchi M, Trifi M (2006) Genetic diversity of different Tunisian fig (Ficus carica L.) collections revealed by RAPD fingerprints. Hereditas 143:15–22

    Article  PubMed  Google Scholar 

  • Sambrook J, Frithsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • SAS (1990) SAS user’s guide: SAS/STAT, SAS BASIC. Version 6.07, 4th edn. SAS Inc., Cary, pp 27512–28000

    Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Sneath PMA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • StatSoft Inc (2001) STATISTICA (data analysis software systems), version 6. StatSoft, Inc, Tulsa (

    Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Sci 173:638–649

    Article  CAS  Google Scholar 

  • Virk PS, Zhu J, Bryan GJ, Jackson MT, Ford-Lloyd BV (2000) Effectiveness of different classes of markers for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112:275–284

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, De Lee T, Hornes M, Frijters A, Pot J, Poleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Weiblen GD (2000) Phylogenetic relationships of functionally diocious Ficus (Moraceae) based on ribosomal DNA sequences and morphology. Am J Bot 87(9):1342–1357

    Article  CAS  PubMed  Google Scholar 

  • Woodhed W, Russell J, Squirell J, Hollingsworth PM, Mackenzie K, Gibby M, Powell W (2005) Comparative analysis of population genetic structure in Althyrium distentifolium (Pteridophyta) using AFLPs and SSRs from anonymous and transcribed gene regions. Mol Ecol 14(6):1681–1695

    Article  Google Scholar 

  • Yee E, Kidwell KK, Sills GR, Lumpkin TA (1999) Diversity among selected Vigna angularis (Azuki) accessions on the basis of RAPD and AFLP markers. Crop Sci 39:268–275

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the Tunisian “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique”.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Amel Salhi Hannachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraket, G., Chatti, K., Saddoud, O. et al. Comparative Assessment of SSR and AFLP Markers for Evaluation of Genetic Diversity and Conservation of Fig, Ficus carica L., Genetic Resources in Tunisia. Plant Mol Biol Rep 29, 171–184 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI: