Skip to main content
Log in

Molecular Cloning and Expression Analysis of a Terpene Synthase Gene, HcTPS2, in Hedychium coronarium

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The Hedychium coronarium can emit a strong scent which is mainly composed of monoterpenes. A cDNA clone, HcTPS2 (H. coronarium terpene synthases), was cloned from H. coronarium flower. The gene has an open reading frame of 1,788 bp which encodes a protein of 596 amino acids with a calculated molecular mass of 66.7 kDa. The deduced amino acid sequence shows 35–38% identity with known monoterpene synthases in other angiosperm species. HcTPS2 was appreciably expressed in the petals, sepals, and stamens of H. coronarium, whereas no expression signal was detected in those of nonscented species. To the best of our knowledge, this is for the first time to clone the terpene synthase gene from H. coronarium, which provides the basis for biotechnological manipulation of scent composition in H. coronarium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HcTPS2:

Hedychium coronarium terpene synthases 2

RACE:

Rapid amplification of cDNAs ends

RT-PCR:

Reverse transcription PCR

SDS:

Sodium dodecyl sulfate

SSC:

Sodium chloride/sodium citrate (buffer)

TPS:

Terpene synthase

References

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  PubMed  Google Scholar 

  • Andersson S (2006) Floral scent and butterfly pollinators. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Taylor & Francis Group, Boca Raton, pp 199–217

    Chapter  Google Scholar 

  • Ayasse M (2006) Floral scent and pollinator attraction in sexuallydeceptive orchids. In: Dudareva N, Pichersky E (eds) Biology offloral scent. Taylor & Francis Group, Boca Raton, pp 219–241

    Chapter  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau RB (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4413

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Gershenzon J, Aubourg S (2000) Biochemical, molecular genetic and evolutionary aspects of defense-related terpenoid metabolism in conifers. Recent Adv Phytochem 34:109–150

    Article  CAS  Google Scholar 

  • Burland TG (2000) DNASTAR’s Lasergene sequence analysis software. Methods Mol Biol 132:71–91

    Google Scholar 

  • Chen F, Tholl D, D'Auria JC et al (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  CAS  PubMed  Google Scholar 

  • Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106:3412–3442

    Article  CAS  PubMed  Google Scholar 

  • Cinege G, Louis S, Hänsch R et al (2009) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol 69:593–604

    Article  CAS  PubMed  Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. Taylor & Francis Group, Boca Raton, pp 147–197

    Chapter  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM et al (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ et al (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Martin D, Kish CM et al (2003) (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  Google Scholar 

  • Guterman I, Shalit M, Menda N et al (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338

    Article  CAS  PubMed  Google Scholar 

  • Keegstra K, Oisen LJ, Theg SM (1989) Chloroplastic and their transport across the envelope membranes. Annu Rev Plant Physiol Plant Mol Biol 40:471–501

    Article  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    Article  CAS  PubMed  Google Scholar 

  • Köllner TG, Held M, Lenk C et al (2008) A maize (E)-beta-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20:482–494

    Article  PubMed  Google Scholar 

  • Köllner TG, Gershenzon J, Degenhardt J (2009) Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry 70(9):1139–1145

    Article  PubMed  Google Scholar 

  • Köpke D, Schröder R, Fischer HM et al (2008) Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 228:427–438

    Article  PubMed  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J et al (2006) Diversity and distribution of floral scent. Botanical Review 72:1–120

    Article  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Kumar S, Tamura K, Jakobsen IB et al (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245. doi:10.1093/bioinformatics/17.12.1244

    Article  CAS  PubMed  Google Scholar 

  • Li RH, Fan YP (2007) Changes in Floral Aroma constituents in Hedychium coronarium Koenig during different blooming stages. Plant Physiol Commun 43(1):176–180

    Google Scholar 

  • Loreto F, Pinelli P, Manes F et al (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24:361–367

    CAS  PubMed  Google Scholar 

  • Lücker J, El Tamer MK et al (2002) Monoterpene biosynthesis inlemon (Citrus limon): cDNA isolation and functional analysis of four monoterpene synthases. Eur J Biochem 269:3160–317

    Article  PubMed  Google Scholar 

  • Nieuwenhuizen NJ, Wang MY, Matich AJ et al (2009) Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60:3203–3219

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Okazaki Y, Ninomiya K et al (2009) Medicinal flowers. XXIV. Chemical structures and hepatoprotective effects of constituents from flowers of Hedychium coronarium. Chem Pharm Bull (Tokyo) 56(12):1704–1709

    Article  Google Scholar 

  • Pérez LM, Pauly G, Carde JP et al (1990) Biosynthesis of limonene by isolated chromoplasts from Citrus sinensis fruits. Plant Physiol Biochem 28:221–229

    Google Scholar 

  • Pichersky E, Lewinsohn E, Croteau R (1995) Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Arch Biochem Biophys 316:803–807

    Article  CAS  PubMed  Google Scholar 

  • Pichersky E, Gershenzon J, Pichersky E et al (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology 5:237–243

    Article  CAS  PubMed  Google Scholar 

  • Roeder S, Hartmann AM, Effmert U et al (2007) Regulation of simultaneous synthesis of floral scent terpenoids by the 1, 8-cineole synthase of Nicotiana suaveolens. Plant Mol Biol 65:107–124

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Schauvinhold I, Larson M et al (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870

    Article  CAS  PubMed  Google Scholar 

  • Schnee C, Köllner TG, Held M et al (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Endo T, Fujii H et al (2005) Isolation and characterization of (E)-beta-ocimene and 1, 8-cineole synthases in Citrus unshiu Marc. Plant Sci 168:987–995

    Article  CAS  Google Scholar 

  • Starks CM, Back KW, Chappell J et al (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Kish CM, Orlova I et al (2004) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16:977–992

    Article  CAS  PubMed  Google Scholar 

  • Turner G, Gershenzon J, Nielson EE et al (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886

    Article  CAS  PubMed  Google Scholar 

  • Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  • Whittington DA, Wise ML, Urbansky M et al (2002) Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci USA 99:15375–15380

    Article  CAS  PubMed  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ et al (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220

    Article  CAS  PubMed  Google Scholar 

  • Wise ML, Savage TJ, Katahira E et al (1998) Monoterpene synthases from common sage (Salvia officinalis) cDNA isolation, characterization, and functional expression of (+)-sabinene synthase, 1, 8-cineole synthase, and (+)-bornyl diphosphate synthase. J Biol Chem 273:14891–14899

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Okamto S, Nakasone K et al (2008) Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith). Planta 227:1291–1299

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Köllner TG, Wiggins G et al (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 55:491–503

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Peters RJ (2009) Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 70:366–369

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the project of National Natural Science Foundation of China (30972026) and Natural Science Foundation of Guangdong Province (07006667) to Y. F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R., Fan, Y. Molecular Cloning and Expression Analysis of a Terpene Synthase Gene, HcTPS2, in Hedychium coronarium . Plant Mol Biol Rep 29, 35–42 (2011). https://doi.org/10.1007/s11105-010-0205-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0205-1

Keywords

Navigation