Skip to main content
Log in

A B Functional Gene Cloned from Lily Encodes an Ortholog of Arabidopsis PISTILLATA (PI)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The classical ABC model proposed for flower development in Arabidopsis and Antirrhinum appropriately sheds light on the biological process of flower development and differentiation and serves in manipulating the floral structure of other important ornamental plants. In this study, LLGLO1, a B functional gene from Lilium longiflorum was isolated and characterized. RT-PCR analysis elucidated that temporal and spatial expression pattern of LLGLO1. This putative gene was strongly expressed in 1, 2, and 3 whorl organs, i.e., outer whorl tepals, inner whorl tepals, and stamens. Genetic effect of LLGLO1 was assayed by ectopic expression in model plant Arabidopsis. Transformed plants showed homeotic transformation of sepals into petaloid sepals in the first whorl, which is similar to the transgenic plants of 35S::PI. So LLGLO1 was one member of GLO/PI sub-family gene to function in flower development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

PI :

PISTILLATA

GLO :

GLOBOSA

AP2 :

APETALA2

AP3 :

APETALA3

DEF :

DEFICIENS

RACE:

rapid amplification of cDNA ends

RNAi:

RNA interference

References

  • Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4:983–993. doi:10.1105/tpc.4.8.983

    Article  CAS  PubMed  Google Scholar 

  • Angenent GC, Busscher M, Franken J, Dons HJM, van Tunen AJ (1995) Functional interaction between the homeotic genes fbp1 and Pmads1 during petunia floral organogenesis. Plant Cell 7:505–516. doi:10.1105/tpc.7.5.507

    Google Scholar 

  • Benedito VA, Visser PB, van Tuyl JM, Angenent GC, Vries SCD, Krens FA (2004) Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J Exp Bot 55(401):1391–1399. doi:10.1093/jxb/erh156

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Symth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49(5):704–711. doi:10.1093/pcp/pcn046

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interaction controlling flower development. Nature 353:31–37. doi:10.1038/353031a0

    Article  CAS  PubMed  Google Scholar 

  • Ditta G, Pinyopich A, Roble P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940. doi:10.1016/j.cub.2004.10.028

    Article  CAS  PubMed  Google Scholar 

  • Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831–841. doi:10.1023/A:1025070827979

    Article  CAS  PubMed  Google Scholar 

  • Kater MM, Colombo L, Franken J, Busscher M, Masiero S, van Lookeren Campagne MM, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in the ability to induce reproductive organ fate. Plant Cell 10:171–182. doi:10.1105/tpc.10.2.171

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198. doi:10.1016/j.gene.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K, Hirai S, Fukui H, Matsumoto S (2001) Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Sci 161:549–557. doi:10.1016/S0168-9452(01)00442-3

    Article  CAS  Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    CAS  PubMed  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698. doi:10.1038/nrg1675

    Article  CAS  PubMed  Google Scholar 

  • Mattanovich D, Ruker F, Machado AC, Laimer M, Regner F, Steinkellner H, Himmber G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acid Res 17:7647

    Google Scholar 

  • Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 45(3):325–332. doi:10.1093/pcp/pch040

    Article  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203. doi:10.1038/35012103

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394. doi:10.1046/j.1365-313X.2001.2641042.x

    Article  CAS  PubMed  Google Scholar 

  • Pinyopich A, Ditta DS, Savidge B, Liljergren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi:10.1038/nature01741

    Article  CAS  PubMed  Google Scholar 

  • Theissen G, Becker A, Rosa AD, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149. doi:10.1023/A:1006332105728

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matri choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46(7):1125–1139. doi:10.1093/pcp/pci125

    Article  CAS  PubMed  Google Scholar 

  • Tzeng TY, Yang CH (2001) A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominate negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42(10):1156–1168. doi:10.1093/pcp/pce151

    Article  CAS  PubMed  Google Scholar 

  • Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836. doi:10.1104/pp.007948

    Article  CAS  PubMed  Google Scholar 

  • Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133:1091–1101. doi:10.1104/pp.103.026997

    Article  CAS  PubMed  Google Scholar 

  • van Tunen AJ, Eikelboom W, Angenent GC (1993) Floral organogenesis in Tulipa. Flowering News lett 16:33–38

    Google Scholar 

  • Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19:587–596

    CAS  PubMed  Google Scholar 

  • Wu XP, Xi ML, Miao HY, Shi JS (2006) Comparison and analysis of extraction methods of the total RNA in Lily. Mol Plant Breeding 6:871–876

    Google Scholar 

  • Xu YF, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54–68. doi:10.1111/j.1365-313X.2006.02669.x

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59. doi:10.1046/j.0960-7412.2003.01473.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their comments and suggestions, which have been useful in improving presentation of this article. We thank Prof. Zewei Luo for constructive comments on the manuscript. We also thank Dr. Xinchun Lin and Dr. Fang Xie for helping to grow Arabidopsis and transform gene. This study was supported by the National Natural Science Foundation of China (30700444, 30972407), Jiangsu Provincial Key Basic Research foundation for Universities(07KJA21019), and the Shanghai Science and Technology Committee (07ZR14008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jisen Shi or Xiaohua Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Shi, J., Xi, M. et al. A B Functional Gene Cloned from Lily Encodes an Ortholog of Arabidopsis PISTILLATA (PI). Plant Mol Biol Rep 28, 684–691 (2010). https://doi.org/10.1007/s11105-010-0193-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0193-1

Keywords