Abstract
The classical ABC model proposed for flower development in Arabidopsis and Antirrhinum appropriately sheds light on the biological process of flower development and differentiation and serves in manipulating the floral structure of other important ornamental plants. In this study, LLGLO1, a B functional gene from Lilium longiflorum was isolated and characterized. RT-PCR analysis elucidated that temporal and spatial expression pattern of LLGLO1. This putative gene was strongly expressed in 1, 2, and 3 whorl organs, i.e., outer whorl tepals, inner whorl tepals, and stamens. Genetic effect of LLGLO1 was assayed by ectopic expression in model plant Arabidopsis. Transformed plants showed homeotic transformation of sepals into petaloid sepals in the first whorl, which is similar to the transgenic plants of 35S::PI. So LLGLO1 was one member of GLO/PI sub-family gene to function in flower development.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- PI :
-
PISTILLATA
- GLO :
-
GLOBOSA
- AP2 :
-
APETALA2
- AP3 :
-
APETALA3
- DEF :
-
DEFICIENS
- RACE:
-
rapid amplification of cDNA ends
- RNAi:
-
RNA interference
References
Angenent GC, Busscher M, Franken J, Mol JNM, van Tunen AJ (1992) Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4:983–993. doi:10.1105/tpc.4.8.983
Angenent GC, Busscher M, Franken J, Dons HJM, van Tunen AJ (1995) Functional interaction between the homeotic genes fbp1 and Pmads1 during petunia floral organogenesis. Plant Cell 7:505–516. doi:10.1105/tpc.7.5.507
Benedito VA, Visser PB, van Tuyl JM, Angenent GC, Vries SCD, Krens FA (2004) Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis. J Exp Bot 55(401):1391–1399. doi:10.1093/jxb/erh156
Bowman JL, Symth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20
Chen MK, Lin IC, Yang CH (2008) Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation. Plant Cell Physiol 49(5):704–711. doi:10.1093/pcp/pcn046
Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x
Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interaction controlling flower development. Nature 353:31–37. doi:10.1038/353031a0
Ditta G, Pinyopich A, Roble P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940. doi:10.1016/j.cub.2004.10.028
Kanno A, Saeki H, Kameya T, Saedler H, Theissen G (2003) Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana). Plant Mol Biol 52:831–841. doi:10.1023/A:1025070827979
Kater MM, Colombo L, Franken J, Busscher M, Masiero S, van Lookeren Campagne MM, Angenent GC (1998) Multiple AGAMOUS homologs from cucumber and petunia differ in the ability to induce reproductive organ fate. Plant Cell 10:171–182. doi:10.1105/tpc.10.2.171
Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183–198. doi:10.1016/j.gene.2004.12.014
Kitahara K, Hirai S, Fukui H, Matsumoto S (2001) Rose MADS-box genes ‘MASAKO BP and B3’ homologous to class B floral identity genes. Plant Sci 161:549–557. doi:10.1016/S0168-9452(01)00442-3
Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783
Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698. doi:10.1038/nrg1675
Mattanovich D, Ruker F, Machado AC, Laimer M, Regner F, Steinkellner H, Himmber G, Katinger H (1989) Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acid Res 17:7647
Park JH, Ishikawa Y, Ochiai T, Kanno A, Kameya T (2004) Two GLOBOSA-like genes are expressed in second and third whorls of homochlamydeous flowers in Asparagus officinalis L. Plant Cell Physiol 45(3):325–332. doi:10.1093/pcp/pch040
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203. doi:10.1038/35012103
Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394. doi:10.1046/j.1365-313X.2001.2641042.x
Pinyopich A, Ditta DS, Savidge B, Liljergren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi:10.1038/nature01741
Theissen G, Becker A, Rosa AD, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149. doi:10.1023/A:1006332105728
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matri choice. Nucleic Acids Res 22(22):4673–4680
Tsai WC, Lee PF, Chen HI, Hsiao YY, Wei WJ, Pan ZJ, Chuang MH, Kuoh CS, Chen WH, Chen HH (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46(7):1125–1139. doi:10.1093/pcp/pci125
Tzeng TY, Yang CH (2001) A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominate negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42(10):1156–1168. doi:10.1093/pcp/pce151
Tzeng TY, Chen HY, Yang CH (2002) Ectopic expression of carpel specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130:1827–1836. doi:10.1104/pp.007948
Tzeng TY, Hsiao CC, Chi PJ, Yang CH (2003) Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133:1091–1101. doi:10.1104/pp.103.026997
van Tunen AJ, Eikelboom W, Angenent GC (1993) Floral organogenesis in Tulipa. Flowering News lett 16:33–38
Winter KU, Weiser C, Kaufmann K, Bohne A, Kirchner C, Kanno A, Saedler H, Theissen G (2002) Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19:587–596
Wu XP, Xi ML, Miao HY, Shi JS (2006) Comparison and analysis of extraction methods of the total RNA in Lily. Mol Plant Breeding 6:871–876
Xu YF, Teo LL, Zhou J, Kumar PP, Yu H (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J 46:54–68. doi:10.1111/j.1365-313X.2006.02669.x
Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59. doi:10.1046/j.0960-7412.2003.01473.x
Acknowledgments
We thank two anonymous reviewers for their comments and suggestions, which have been useful in improving presentation of this article. We thank Prof. Zewei Luo for constructive comments on the manuscript. We also thank Dr. Xinchun Lin and Dr. Fang Xie for helping to grow Arabidopsis and transform gene. This study was supported by the National Natural Science Foundation of China (30700444, 30972407), Jiangsu Provincial Key Basic Research foundation for Universities(07KJA21019), and the Shanghai Science and Technology Committee (07ZR14008).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wu, X., Shi, J., Xi, M. et al. A B Functional Gene Cloned from Lily Encodes an Ortholog of Arabidopsis PISTILLATA (PI). Plant Mol Biol Rep 28, 684–691 (2010). https://doi.org/10.1007/s11105-010-0193-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11105-010-0193-1


