Skip to main content

Advertisement

Log in

Reference Gene Selection for Real-Time Quantitative Polymerase Chain Reaction of mRNA Transcript Levels in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The Chinese cabbage is a crop belonging to the family Cruciferae; very few studies have focused on the analysis of gene expression in this economically important crop. In this study, we used real-time quantitative polymerase chain reaction to identify the control genes that are the most stably expressed in a given set of tissues and under conditions of drought stress and downy mildew infection. We characterized the transcript stability of nine candidate reference genes, namely, those encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ubiquitin (Ubc), elongation-factor-1-α (EF-1-α), adenine phosphoribosyltransferase (Apr), clathrin, cyclophilin (Cyp), tubulin (Tub), Actin, and 18s rRNA, using the geNorm and Normfinder software programs. The results of a geNorm analysis indicated that EF-1-α and Apr were the most suitable reference genes among the given set of tissues and that GAPDH and Ubc were the most stable genes under conditions of drought stress and downy mildew infection. Furthermore, the results of an analysis performed using the Normfinder software program indicated EF-1-α to be the best normalization factor in the given set of tissues and under conditions of downy mildew infection and GAPDH to be the best factor under drought stress conditions. The results of the geNorm analysis also helped determine the minimum number of genes required to calculate a reliable normalization factor. A study on the variability of expression of PSY expression showed that the relative quantification of this gene varied depending on the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Bartley GE, Scolnik PA (1995) Plant carotenoids: pigments for photoprotection, attraction, and human health. Plant Cell 7:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120

    Article  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biology 4:14

    Article  PubMed  Google Scholar 

  • Burton RA, Shirley NJ, King BJ, Harvey AJ, Fincher GB (2004) The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes. Plant Physiol 134:224–236

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193

    Article  CAS  PubMed  Google Scholar 

  • Chen XF, Hou XL, Zhang ZY, Zheng JQ (2008) Molecular characterization of two important antifungal proteins isolated by downy mildew infection in non-heading Chinese cabbage. Mol Bio Rep 35(4):621–629

    Article  CAS  Google Scholar 

  • Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LMG, Romano E, Grossi-de-Sa MF, Vaslin M, Alves-Ferreira M (2009) Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breeding 23:607–616. doi:10.1007/s11032-009-9259-x

    Article  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  CAS  PubMed  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W (2005) Genome-wide identification and testing of reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    Article  CAS  PubMed  Google Scholar 

  • Dean JD, Goodwin PH, Hsiang T (2002) Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-glucanase in Nicotiana benthamiana infected with Colletotrichum destructivum. Plant Mol Biol Rep 20: 347–356

  • Desroche N, Beltramo C, Guzzo J (2005) Determination of an internal control to apply reverse transcription quantitative PCR to study stress response in the lactic acid bacterium Oenococcus oeni. J Microbiol Methods 60:325–333

    Article  CAS  PubMed  Google Scholar 

  • Frost P, Nilsen F (2003) Validation of reference genes for transcription profiling in the salmon louse, Lepeophtheirus salmonis, by quantitative real-time PCR. Vet Parasitol 118:169–174

    Article  CAS  PubMed  Google Scholar 

  • Gao RJ, Dai DP, Ma RC, Cao MQ, Yan YM, Wang YD, Ren SJ, Guo XY (2004) EST analysis of the heading leaf of Chinese cabbage (Brassica rapa L. ssp pekinensis) in the early phase of the heading stage. Chinese Journal of Agricultural Biotechnology 1:119–124

    Article  CAS  Google Scholar 

  • Guénin S, Mauriat M, Pelloux J, Wuytswinkel OV, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493

    Article  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    Article  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  CAS  PubMed  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation: strategies and considerations. Genes Immun 6:279–284

    Article  CAS  PubMed  Google Scholar 

  • Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25:1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Klok EJ, Wilson IW, Wilson D, Chapman SC, Ewing RM, Somerville SC, Peacock WJ, Dolferus R, Dennis ES (2002) Expression profile analysis of the low oxygen response in Arabidopsis root cultures. Plant Cell 14:2481–2494

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Lim MH, Kim JA, Lee SI, Kim JS, Jin M, Kwon SJ, Mun JH, Kim YK, Kim HU, Hur Y, Park BS (2008) Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol Cells 26(6):595–605

    CAS  PubMed  Google Scholar 

  • Nicot N, Hausman J, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Article  CAS  PubMed  Google Scholar 

  • Olbrich M, Gerstner E, Welzl G, Fleischmann F, Osswald W, Bahnweg G, Ernst D (2008) Quantification of mRNAs and housekeeping gene selection for quantitative real-time RT-PCR normalization in European beech (Fagus sylvatica L) during abiotic and biotic stress. Z Naturforsch 63c:574–582

    Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression. Plant Physiology 129:886–888

    Article  CAS  PubMed  Google Scholar 

  • Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Phillips MA, D’Auria JC, Luck K, Gershenzon J (2009) Evaluation of candidate reference genes for real-time quantitative PCR of plant samples using purified cDNA as template. Plant Mol Biol Rep 27:315–416

    Google Scholar 

  • Pombo-Suarez M, Calaza M, Gomez-Reino JJ, Gonzalez A (2002) Reference genes for normalization of gene expression studies in human osteoarthritic articular cartilage. BMC Mol Biol 9:17

    Google Scholar 

  • Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862

    Google Scholar 

  • Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Ronning SB, Berdal KG, Boydler Andersen CB, Holst-Jensen A (2006) Novel reference gene, PKABA1, used in a duplex real-time polymerase chain reaction for detection and quantitation of wheat and barley-derived DNA. J Agric Food Chem 54(3):682–687

    Article  CAS  PubMed  Google Scholar 

  • Savli H, Karadenizli A, Kolayli F, Gundes S, Ozbek U, Vahaboglu H (2003) Expression stability of six housekeeping genes: a proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J Med Microbiol 52:403–408

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen T, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81

    Article  CAS  PubMed  Google Scholar 

  • Schuller A, Ludwig-Müller J (2006) A family of auxin conjugate hydrolases from Brassica rapa characterization and expression during clubroot disease. New Phytol 171:145–158

    Article  CAS  PubMed  Google Scholar 

  • Stöcher M, Leb V, Hölzl G, Berg J (2002) A simple approach to the generation of heterologous competitive internal controls for real-time PCR assays on the Light Cycler. J Clin Virol 25:S47–S53

    Article  PubMed  Google Scholar 

  • Stöcher M, Leb V, Berg J (2003) A convenient approach to the generation of multiple internal control DNA for a panel of realtime PCR assays. J Virol Methods 108:1–8

    Google Scholar 

  • Tai HH, Connl G, Davidsonl C, Platt HW (2009) Arbitrary multi-gene reference for normalization of real-time PCR gene expression data. Plant Mol Biol Rep 27:315–320

    Google Scholar 

  • Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75:291–295

    Article  CAS  PubMed  Google Scholar 

  • Thomas C, Meyer D, Wolff M, Himber C, Alioua M, Steinmetz A (2003) Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Mol Biol 52:1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  CAS  PubMed  Google Scholar 

  • Vandecasteele SJ, Peetermans WE, Merckx R, Van Eldere J (2001) Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183:7094–7101

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1–0034.11

    Article  Google Scholar 

  • Wallis JG, Wang H, Guerra DJ (1997) Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35:323–330

    Article  CAS  PubMed  Google Scholar 

  • Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M (2000) Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2:143–147

    CAS  PubMed  Google Scholar 

  • Williams TD, Gensberg K, Minchin SD, Chipman JK (2003) A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat Toxicol 65:141–157

    Google Scholar 

  • Yang L, Pan A, Jia J, Ding J, Chen J, Huang C, Zhang C, Zhang D (2005) Validation of a tomato specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. J Agric Food Chem 53:183–190

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Simon JW (1999) Direct comparison of GAPDH, β-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun 259:523–526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Beijing Nova Program, China (No.2006B05) and the Program of Beijing Municipal Science and Technology Committee (Z09070500590909).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Yu, S., Zhang, F. et al. Reference Gene Selection for Real-Time Quantitative Polymerase Chain Reaction of mRNA Transcript Levels in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Rep 28, 597–604 (2010). https://doi.org/10.1007/s11105-010-0185-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-010-0185-1

Keywords

Navigation