Skip to main content

Advertisement

Log in

Molecular Cloning and Characterization of a Chitinase-Homologous Gene from Mikania micrantha Infected by Cuscuta campestris

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mmchi1, a putative chitinase gene from Mikania micrantha infected by the parasitic plant Cuscuta campestris, was cloned and characterized. Mmchi1 is predicted to encode a 35.42-kDa polypeptide with a isoelectric point of 5.69. The corresponding genomic sequence contains two introns (1,171 and 621 bp). Phylogenetic analysis showed that the predicted Mmchi1 protein is related to class I and class II chitinases (glycoside hydrolase family 19). Mmchi1 is likely a class II chitinase, as the protein sequence lacks a cysteine-rich hevein domain at its N terminus. Southern blot analysis suggests that sequences related to Mmchi1 exist in the genome of M. micrantha. Expression of Mmchi1 in different tissues was analyzed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Mmchi1 was constitutively expressed in shoots, whereas only low transcript levels were detected in other tissues. Transcript levels of Mmchi1 in shoots of M. micrantha infected by C. campestris, as analyzed by RT-PCR and real-time PCR, significantly increased after 2 days post infection but markedly decreased during the following days. Transcript levels of Mmchi1 determined by semiquantitative RT-PCR varied in noninfected shoots exposed to various stress factors. Elevated levels of Mmchi1 transcripts were accumulated in response to mechanical wounding and application of abscisic acid, salicylic acid, or ZnSO4, respectively. Under salt stress conditions, Mmchi1 transcripts accumulated at significant lower levels, however. Taken together, these data suggest that Mmchi1 is a stress-related gene of M. micrantha, which is stimulated in response to C. campestris infection at early post-penetration stage but significantly suppressed during later infection stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dpi:

Days post infection

MW:

Molecular weight

pI:

Isoelectric point

ORF:

Open reading frame

PCR:

Polymerase chain reaction

PR:

Pathogenesis-related

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SSH:

Suppression subtractive hybridization

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Strem MD, Bae H, Mayolo GA, Guiltinan MJ (2005) Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Sci 168:1247–1258

    Article  CAS  Google Scholar 

  • Blumenthal T, Steward K (1997) RNA processing and gene structure. In: Riddle DL, Blumenthal T, Meyer BJ, Priess JP (eds) C. elegans II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 117–396

    Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  PubMed  Google Scholar 

  • Collinge D, Kragh K, Mikkelsen J, Nielsen K, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Dawson JH, Musselman LJ, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317

    Google Scholar 

  • de Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, van Kammen A, de Vries SC (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4:425–433

    Article  PubMed  Google Scholar 

  • de Jong AJ, Hendriks T, Meijer EA, Penning M, Schiavo FL, Terzi M, van Kammen A, de Vries SC (1995) Transient reduction in secreted 32 kDa chitinase prevents some somatic embryogenesis in carrot variant ts11. Dev Genet 16:332–343

    Article  Google Scholar 

  • Ding LW, Sun QY, Wang ZY, Sun YB, Xu ZF (2008) Using silica particles to isolate total RNA from plant tissues recalcitrant to extraction in guanidine thiocyanate. Anal Biochem 374:426–428

    Article  CAS  PubMed  Google Scholar 

  • Dong JZ, Dunstan DI (1997) Endochitinase and β-1, 3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194

    Article  CAS  PubMed  Google Scholar 

  • Durand A, Hughes R, Roussel A, Flatman R, Henrissat B, Jugel N (2005) Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18. FEBS J 272:1745–1755

    Article  CAS  PubMed  Google Scholar 

  • Hanfrey C, Fife M, Buchanan-Wollaston V (1996) Leaf senescence in Brassica napus: expression of genes encoding pathogenesis-related proteins. Plant Mol Biol 30:597–609

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  PubMed  Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) The world’s worst weeds: distribution and biology. University Press of Hawaii, Honolulu, pp 320–327

    Google Scholar 

  • Hong JK, Hwang BK (2002) Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localization in pepper (Capsicum annuum). Physiol Plant 114:549–558

    Article  CAS  PubMed  Google Scholar 

  • Keulen H, Wei R, Cutright TJ (2008) Arsenate-induced expression of a class III chitinase in the dwarf sunflower Helianthus annuus. Environ Exp Bot 63:281–288

    Article  Google Scholar 

  • Khan AA, Shih DS (2004) Molecular cloning, characterization, and expression analysis of two class II chitinase genes from the strawberry plant. Plant Sci 166:753–762

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Letousey P, de Zélicourt A, Vieira Dos Santos C, Thoiron S, Monteau F, Simier P, Thalouarn P, Delavault P (2007) Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol 56:536–546

    Article  CAS  Google Scholar 

  • Li D, Ye Q, Zhu G (2007) Analysis on the germplasm resources and genetic relationships among hybrid Cymbidium cultivars and native species with RAPD markers. Agric Sci China 6:922–929

    CAS  Google Scholar 

  • Li DM, Staehelin C, Zhang YS, Peng SL (2009) Identification of genes differentially expressed in Mikania micrantha during Cuscuta campestris infection by suppression subtractive hybridization. J Plant Physiol . doi:10.1016/j.jplph.2009.02.002

    Google Scholar 

  • Lian JY, Ye WH, Cao HL, Lai ZM, Wang ZM, Cai CX (2006) Influence of obligate parasite Cuscuta campestris on the community of its host Mikania micrantha. Weed Res 46:441–443

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, DePoorter M (2001) 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. IUCN/SSC Invasive Species Specialist Group, Auckland

    Google Scholar 

  • Lutcke HA, Chow KC, Mickel FS, Moss KA, Kern HF, Scheele GA (1987) Selection of AUG initiation codons differs in plants and animals. EMBO J 6:43–48

    CAS  PubMed  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1988a) Antifungal hydrolases in pea tissue: I. Purification and characterization of two chitinases and two β-1, 3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87:325–333

    Article  CAS  PubMed  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988b) Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combination of chitinase and β-1, 3-glucanase. Plant Physiol 88:936–942

    Article  CAS  PubMed  Google Scholar 

  • Maximova SN, Marelli JP, Pishak AYS, Verica JA, Guiltinan MJ (2006) Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta 224:740–749

    Article  CAS  PubMed  Google Scholar 

  • Nairn CJ, Niedz RP, Hearn CJ, Osswald WF, Mayer RT (1997) cDNA cloning and expression of a class II acidic chitinase from sweet orange. Biochim Biophys Acta 1351:22–26

    CAS  PubMed  Google Scholar 

  • Neuhaus JM (1999) Plant chitinase (PR-3, PR-4, PR-8, PR-11). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, New York, pp 77–107

    Google Scholar 

  • Neuhaus JM, Fritig B, Linthorst HJM, Meins F Jr, Mikkelsen JD, Ryals J (1996) A revised nomenclature for chitinase genes. Plant Mol Biol Rep 14:102–104

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parker C (1972) The Mikania problem. PANS 18:312–315

    Google Scholar 

  • Passarinho PA, Van Hengel AJ, Fransz PF, de Vries SC (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  CAS  PubMed  Google Scholar 

  • Perlick AM, Frühling M, Schröder G, Frosch SC, Pühler A (1996) The broad bean gene VfNOD32 encodes a nodulin with sequence similarities to chitinases that is homologous to (α/β)8-barrrel-type seed proteins. Plant Physiol 110:147–154

    Article  CAS  PubMed  Google Scholar 

  • Porat R, Vinokur V, Holland D, McCollum TG, Droby S (2001) Isolation of a citrus chitinase cDNA and characterization of its expression in response to elicitation of fruit pathogen resistance. J Plant Physiol 158:1585–1590

    Article  CAS  Google Scholar 

  • Robert N, Roche K, Lebeau Y, Breda C, Boulay M, Esnault R, Buffard D (2002) Expression of grapevine chitinase genes in berries and leaves by fungal or bacterial pathogens. Plant Sci 162:389–400

    Article  CAS  Google Scholar 

  • Robinson SP, Jacobs AK, Dry IB (1997) A class VI chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Schultze M, Staehelin C, Brunner F, Genetet I, Legrand M, Fritig B, Kondorosi É, Kondorosi Á (1998) Plant chitinase/lysozyme isoforms show distinct substrate specificity and cleavage site preference towards lipochitooligosaccharide nod signals. Plant J 16:571–580

    Article  CAS  Google Scholar 

  • Shen H, Ye WH, Hong L, Cao HL, Wang ZM (2005) Influence of the obligate parasite Cuscuta campestris on growth and biomass allocation of its host Mikania micrantha. J Exp Bot 56:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Hong L, Ye WH, Cao HL, Wang ZM (2007) The influence of the holoparasitic plant Cuscuta campestris on the growth and photosynthesis of its host Mikania micrantha. J Exp Bot 58:2929–2937

    Article  CAS  PubMed  Google Scholar 

  • Shinya T, Hanai K, Gális I, Suzuki K, Matsuoka K, Matsuoka H, Saito M (2007) Characterization of NtChitIV, a class IV chitinase induced by β-1, 3, 1, 6-glucan elicitor from Alternaria alternata 102: antagonistic effect of salicylic acid and methyl jasmonate on the induction of NtChitIV. Biochem Biophys Res Commun 353:311–317

    Article  CAS  PubMed  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boller T, Kondorosi A (1994) Structural modifications in Rhizobium meliloti nod factors influence their stability against hydrolysis by root chitinases. Plant J 5:329–330

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Van Damme EJM, Culerrier R, Barre A, Alvarez R, Rougé PWJ (2007) A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes. Plant Physiol 144:662–672

    Article  PubMed  Google Scholar 

  • van Hengel AJ, Tedesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol 125:1880–1890

    Article  PubMed  Google Scholar 

  • Wirjahar S (1976) Autecological study of Mikania spp. In: Proceedings of Fifth Asian-Pacific Weed Science Society Conference, 5–11, October 1975. Tokyo: Asian Weed Science Society. pp 70–73

  • Wu CT, Bradford KJ (2003) Class I chitinase and β-1, 3 glucanase are differentially regulated by wounding, methyl jasmonate, ethylene, and gibberellin in tomato seeds and leaves. Plant Physiol 133:263–273

    Article  CAS  PubMed  Google Scholar 

  • Xiao YH, Li XB, Yang XY, Luo M, Hou L, Guo SH, Luo XY, Pei Y (2007) Cloning and characterization of a balsam pear class I chitinase gene (Mcchil1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotechnol Biochem 71:1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Zhang LY, Ye WH, Cao HL, Feng HL (2004) Mikania micrantha H.B.K. in China—an overview. Weed Res 44:42–49

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ling-Wen Ding for providing helpful information on RNA extraction. This research was financially supported by the Key Project Foundation of the Chinese Education Ministry (project no. 704037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Lin Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, DM., Staehelin, C., Wang, WT. et al. Molecular Cloning and Characterization of a Chitinase-Homologous Gene from Mikania micrantha Infected by Cuscuta campestris . Plant Mol Biol Rep 28, 90–101 (2010). https://doi.org/10.1007/s11105-009-0125-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0125-0

Keywords

Navigation