Skip to main content
Log in

Two Highly Homologous Promoters of a Squash Aspartic Protease Inhibitor (SQAPI) Multigene Family Exhibit Differential Expression in Transgenic Tobacco Phloem and Trichome Cells

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Two variants of the promoter of the squash aspartic acid protease inhibitor multigene family were isolated from Cucurbita maxima cv. ‘Supermarket’ Hybrid genomic DNA. The isolated promoters, possibly not full length, comprised a 5′-untranslated region (UTR) of 202–208 bp, contained a 63-bp upstream open reading frame (uORF) and the immediate upstream sequences of 441–445 bp. The two promoters contained several small deletions relative to each other and 22 single base differences but exhibit overall 92.5% homology over 654 bp. When the promoters were fused to a β-glucuronidase reporter gene and expressed in tobacco, one variant was highly expressed in the companion cells of the inner and outer phloem of leaves and at lower levels in other organs. The other variant was expressed at high levels in the long glandular trichomes of the leaf. Deletion analysis identified a region of ~280 bp immediately upstream of the 5′-UTR containing the TATA box that was responsible for phloem specific expression and a further region of ~180 bp that enhanced expression in one promoter and conferred trichome expression in the other. Removal of the 5′-UTR, including the uORF, inactivated the phloem promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SQAPI:

Squash aspartic protease inhibitor

TSS:

Transcription start site

uORF:

Upstream open reading frame

5′-UTR:

5′-untranslated region

GUS:

β-Glucuronidase

References

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38:179–204. doi:10.1146/annurev.pp. 38.060187.001143

    Article  Google Scholar 

  • Ayre BG, Blair JE, Turgeon R (2003) Functional and phylogenetic analysis of a conserved regulatory program in the phloem of minor veins. Plant Physiol 133:1229–1239. doi:10.1104/pp. 103.027714

    Article  PubMed  CAS  Google Scholar 

  • Benfey P, Chua N (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966. doi:10.1126/science.250.4983.959

    Article  PubMed  CAS  Google Scholar 

  • Bhattachariya-Pakrasi M, Peng J, Elmer S, Laco G, Shen P, Kaniewska B, Kononowicz H, Wen F, Hodges K, Beachy N (1993) Specificity of a promoter from the rice tungro bacilliform virus for expression in phloem tissues. Plant J 4:71–79. doi:10.1046/j.1365-313X.1993.04010071.x

    Article  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 22:8711–8721. doi:10.1093/nar/12.22.8711

    Article  Google Scholar 

  • Bostwick DE, Dannehoffer JM, Skaggs MI, Lister RM, Larkins BA, Thompson GA (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 2:113–116. doi:10.1007/BF02670468

    Article  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50. doi:10.1007/s004250000487

    Article  PubMed  CAS  Google Scholar 

  • Christeller JT, Farley PC, Ramsay J, Sullivan PA, Laing WA (1998) Purification, characterization and cloning of an aspartic proteinase inhibitor from squash phloem exudate. Eur J Biochem 254:160–167. doi:10.1046/j.1432-1327.1998.2540160.x

    Article  PubMed  CAS  Google Scholar 

  • Christeller JT, Farley PC, Marshall RK, Anandan A, Wright M, Laing WA (2006) The squash aspartic proteinase inhibitor SQAPI, is widely present in the Cucurbitales, comprises a small multigene family and is a member of the phytocystatin family. J Mol Evol 63:747–757. doi:10.1007/s00239-005-0304-z

    Article  PubMed  CAS  Google Scholar 

  • Clark AM, Jacobsen KR, Bostwick DE, Dannehoffer JM, Skaggs MI, Thompson GA (1997) Molecular characterization of a phloem-specific gene encoding the filament protein, phloem protein I (PP1), from Cucurbita maxima. Plant J 12:49–61. doi:10.1046/j.1365-313X.1997.12010049.x

    Article  PubMed  CAS  Google Scholar 

  • Contim LA, Waclawovsky AJ, Delu-Filho N, Pirovani CP, Clarindo WR, Loureiro ME, Carvalho CR, Fontes EP (2003) The soybean sucrose binding protein gene family: genomic organization, gene copy number and tissue-specific expression of the SBP2 promoter. J Exp Bot 54:2643–2653. doi:10.1093/jxb/erg301

    Article  PubMed  CAS  Google Scholar 

  • Craig S (1992) The gus reporter gene—application to light and transmission electron microscopy. In: Gallagher SR (ed) GUS protocols. Academic, San Diego, pp 115–124

    Google Scholar 

  • Doyle J, Doyle H (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Farley PC, Christeller JT, Sullivan ME, Sullivan PA, Laing WA (2002) Analysis of the interaction between the aspartic peptidase inhibitor SQAPI & aspartic peptidases using surface plasmon resonance. J Mol Recognit 15:135–144. doi:10.1002/jmr.568

    Article  PubMed  CAS  Google Scholar 

  • Foster R, Izawa T, Chua H (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    PubMed  CAS  Google Scholar 

  • Gahrtz M, Stolz J, Sauer N (1994) A phloem-specific sucrose-H+ symporter from Plantago major supports the model of apoplastic phloem loading. Plant J 6:697–706. doi:10.1046/j.1365-313X.1994.6050697.x

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SR (1992) Quantitation of GUS activity by fluorometry. In: Gallagher SR (ed) GUS protocols. Academic, San Diego, pp 47–59

    Google Scholar 

  • Garcia J, Castillo J (2005) Identification of two novel human genes, DIPLA1 and DIPAS, expressed in placental tissue. Gene 344:241–250. doi:10.1016/j.gene.2004.10.004

    Article  PubMed  CAS  Google Scholar 

  • Graham MW, Craig S, Waterhouse M (1997) Expression patterns of vascular specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Mol Biol 33:729–735. doi:10.1023/A:1005726918110

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-Alcalá G, Calo L, Gros F, Caissard JC, Gotor C, Romero LC (2005) A versatile promoter for the expression of proteins in glandular and non-glandular trichomes from a variety of plants. J Exp Bot 56:2487–2494. doi:10.1093/jxb/eri241

    Article  PubMed  Google Scholar 

  • Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaaar B (2005) Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol Biol 57:155–171. doi:10.1007/s11103-004-6910-0

    Article  PubMed  CAS  Google Scholar 

  • Hedley PE, Maddison AL, Davidson D, Machray GC (2000) Differential expression of invertase genes in internal and external phloem tissues of potato (Solanum tuberosum L). J Exp Bot 51:817–821. doi:10.1093/jexbot/51.345.817

    Article  PubMed  CAS  Google Scholar 

  • Hehn A, Rodhe W (1998) Characterization of the cis-acting elements affecting strength and phloem specificity of the coconut foliar decay virus promoter. J Gen Virol 79:1495–1499

    PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux M (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832. doi:10.1023/A:1006496308160

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholtz D, Rogers DG, Fraley RF (1985) A simple and general method for transferring genes into plants. Science 227:1299–1301

    Google Scholar 

  • Iacono M, Mignone F, Pesole G (2005) GUAUG and uORFs in human and rodent 5′ untranslated mRNAs. Gene 349:97–105. doi:10.1016/j.gene.2004.11.041

    Article  PubMed  CAS  Google Scholar 

  • Imajuku Y, Ohashi Y, Aoyama T, Goto K, Oka A (2001) An upstream region of the Arabidopsis thaliana CDKA;1 (CDC2aAt) gene directs transcription during trichome development. Plant Mol Biol 46:205–213. doi:10.1023/A:1010665831955

    Article  PubMed  CAS  Google Scholar 

  • Izawa T, Foster R, Nakajima M, Shimamoto K (1994) The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development. Plant Cell 6:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Jefferson A, Kavavnagh A, Bevan W (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Johnson C, Boden E, Desai M, Pascuzzi P, Arias J (2001) In vivo target promoter-binding activities of a xenobiotic stress-activated TGA factor. Plant J 28:237–243. doi:10.1046/j.1365-313X.2001.01147.x

    Article  PubMed  CAS  Google Scholar 

  • Kehr J, Haebel S, Blechschmidt-Schneider S, Willmitzer L, Steup M, Fisahn J (1999) Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. By matrix-assisted laser desorption/ionization time of flight mass spectrometry combined with sodium dodecyl sulfate gel electrophoresis. Planta 207:612–619. doi:10.1007/s004250050525

    Article  PubMed  CAS  Google Scholar 

  • Kolb D, Muller M (2003) Different trichome types on the leaves of Styrian oil pumpkin (Greb). Phyton 43:365–379

    Google Scholar 

  • Koyan A, Zhang LB, Schaefer H, Renner SS (2007) A multi-chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 44:553–577. doi:10.1016/j.ympev.2006.12.022

    Article  Google Scholar 

  • Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A 86:7890–7894

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Xia KF, Zhu JC, Deng YG, Huang XL, Hu BL, Xu X, Xu ZF (2006) The nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular trichomes. Plant Cell Physiol 47:1274–1284. doi:10.1093/pcp/pcj097

    Article  PubMed  CAS  Google Scholar 

  • Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia lyase gene family in parsley. Proc Natl Acad Sci U S A 92:5905–5909. doi:10.1073/pnas.92.13.5905

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Trujillo M, Briones V, Barcenas T, Estrella L (2002) Functional analyses of the 5′ untranslated region of the sucrose phosphate synthase rice gene sps1. Plant Sci 165:9–20. doi:10.1016/S0168-9452(03)00116-X

    Article  Google Scholar 

  • Matsuda Y, Liang G, Zhu Y, Ma F, Nelson RS, Ding B (2002) The Commelina yellow mottle virus promoter drives companion cell-specific expression in multiple organs of transgenic tobacco. Protoplasma 220:51–58. doi:10.1007/s00709-002-0027-6

    Article  PubMed  CAS  Google Scholar 

  • Matsuki R, Onodera H, Yamauchi T, Uchimiya H (1989) Tissue specific expression of the RolC promoter of the Ri plasmid in transgenic rice. Mol Gen Genet 220:12–16. doi:10.1007/BF00260849

    Article  CAS  Google Scholar 

  • Medberry SL, Lockhart BEL, Olszewski NE (1992) The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4:185–192

    Article  PubMed  CAS  Google Scholar 

  • Menkens A, Schindler U, Cashmore A (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506–510. doi:10.1016/S0968-0004(00)89118-5

    Article  PubMed  CAS  Google Scholar 

  • Merrick W (2004) Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332:1–11. doi:10.1016/j.gene.2004.02.051

    Article  PubMed  CAS  Google Scholar 

  • Messing A, Geraghty D, Heidecker G, Hu N, Kridl J, Rubenstein I (1983) Plant gene structure. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants. Plenum, New York, pp 211–227

    Google Scholar 

  • Michie CK, Reid WW (1968) Biosynthesis of complex terpenes in the leaf cuticle and trichomes of Nicotiana tabacum. Nature 218:578. doi:10.1038/218578a0

    Article  CAS  Google Scholar 

  • Molhoj M, Jorgensen B, Ulvskov P, Borkhardt B (2001) Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1, 4-β-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol Biol 46:263–275. doi:10.1023/A:1010688726755

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yokoyama R, Tomita E, Nishitani K (2003) Two azuki bean XTH genes, VaXTH1 and VaXTH2, with similar tissue-specific profiles, are differentially regulated by auxin. Plant Cell Physiol 44:16–24. doi:10.1093/pcp/pcg002

    Article  PubMed  CAS  Google Scholar 

  • Redman J, Whitcraft J, Johnson C, Arias J (2002) Abiotic and biotic stress differentially stimulate as-1 element activity in Arabidopsis. Plant Cell Rep 21:180–185. doi:10.1007/s00299-002-0472-x

    Article  CAS  Google Scholar 

  • Reyes J, Muro-Pastor M, Florencio F (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier W, Hirner B, Frommer B (1993) Potato sucrose transporter expression in minor vein indicates a role in phloem loading. Plant Cell 5:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Sauer N, Stolz J (1994) SUC1 and SUC2: two sucrose transporters from A. thaliana: expression and characterization in Baker’s yeast and identification of the histidine tagged protein. Plant J 6:67–77. doi:10.1046/j.1365-313X.1994.6010067.x

    Article  PubMed  CAS  Google Scholar 

  • Schmulling T, Schell J, Spena A (1989) Promoters of the RolA, B and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1:665–670

    Article  PubMed  CAS  Google Scholar 

  • Shahmuradov LA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117. doi:10.1093/nar/gkg041

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Wang MB, Powell KS, Van-Damme E, Hilder VA, Gatehouse AMR, Boulter D, Gatehouse JA (1994) Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of beta-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot 45:623–631. doi:10.1093/jxb/45.5.623

    Article  CAS  Google Scholar 

  • Shirsat A, Wilford N, Croy R, Boulter D (1989) Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco. Mol Gen Genet 215:326–331. doi:10.1007/BF00339737

    Article  PubMed  CAS  Google Scholar 

  • Siebert D, Chenchik A, Kellogg E, Lukyanov A, Lukyanov S (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res 6:1087–1088. doi:10.1093/nar/23.6.1087

    Article  Google Scholar 

  • Sugaya S, Hayakawa K, Handa T, Uchimiya H (1989) Cell specific expression of the RolC gene of the TL-DNA of Ri plasmid in transgenic tobacco plant. Cell Physiol 30:649–653

    CAS  Google Scholar 

  • Truernit E, Sauer N (1995) The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of B. glucouronidase to the phloem: evidence for phloem loading and unloading by SUC2. Planta 196:564–570. doi:10.1007/BF00

    Article  PubMed  CAS  Google Scholar 

  • Van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26:125–149. doi:10.1046/j.1365-3040.2003.00963.x

    Article  Google Scholar 

  • Wang E, Gan S, Wagner GJ (2002) Isolation and characterization of the CYP71D16 trichome-specific promoter from Nicotiana tabacum L. J Exp Bot 53:1891–1897. doi:10.1093/jxb/erf054

    Article  PubMed  CAS  Google Scholar 

  • Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W (2004) Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry 65:1641–1649. doi:10.1016/j.phytochem.2004.03.026

    Article  PubMed  CAS  Google Scholar 

  • Whitaker TW (1956) The origin of the cultivated Cucurbita. Am Nat 90:171–176. doi:10.1086/281923

    Article  Google Scholar 

  • Wu B, Pan R, Lu R, Tian Y (1999) Deletion analysis and functional studies of the promoter from Commelina yellow mottle virus. Wei Sheng Wu Xue Bao 39:15–22

    PubMed  CAS  Google Scholar 

  • Wu AM, Lv SY, Liu JY (2007) Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos. Cell Res 17:174–183. doi:10.1038/sj.cr.7310119

    Article  PubMed  CAS  Google Scholar 

  • Xing X, Du X, Lu Z, Ning T, Ke Y (2005) Characterization of the promoter of 1A6/DRIM a novel cancer related gene and identification of its transcriptional activator. Gene 344:161–169. doi:10.1016/j.gene.2004.09.036

    Article  PubMed  CAS  Google Scholar 

  • Xu FU, Qi WQ, Ouyang XZ, Yeung E, Chye ML (2001) A proteinase inhibitor II of Solanum americanum is expressed in the phloem. Plant Mol Biol 47:727–738. doi:10.1023/A:1013623628857

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Russell D (1990) Maize sucrose synthase-1 promoter directs phloem-specific expression of gus gene in transgenic tobacco plants. Proc Natl Acad Sci U S A 87:4144–4148. doi:10.1073/pnas.87.11.4144

    Article  PubMed  CAS  Google Scholar 

  • Yin Y, Chen L, Beachy R (1997) Promoter elements required for phloem-specific gene expression from the RTBC promoter in rice. Plant J 12:1179–1188. doi:10.1046/j.1365-313X.1997.12051179.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Douglas Hopcroft and Raymond Bennett for assistance with microscopy. The research was made possible by a grant from the New Zealand Public Good Research Fund (FfRST Contract CO6X0207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Christeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anandan, A., Gatehouse, L.N., Marshall, R.K. et al. Two Highly Homologous Promoters of a Squash Aspartic Protease Inhibitor (SQAPI) Multigene Family Exhibit Differential Expression in Transgenic Tobacco Phloem and Trichome Cells. Plant Mol Biol Rep 27, 355–364 (2009). https://doi.org/10.1007/s11105-009-0096-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0096-1

Keywords

Navigation