Skip to main content

Advertisement

Log in

Overexpression of Soybean (Glycine max (L.) Meer.) L34 Gene Leads to Reduced Survival to Cold Stress in Transgenic Arabidopsis

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

A ribosomal protein (R-protein) L34-like gene, designated as SOL34, was isolated from soybean using a cDNA-amplified fragment length polymorphism (cDNA-AFLP) approach. The full-length cDNA sequence of SOL34 was 360 bp, and encoding a protein with a calculated molecular mass of 132 kD. When compared to 60S ribosomal L34 proteins in Genbank using the blastp tool, the SOL34 had 95%, 95%, and 90% amino-acid-sequence identity with those in Medicago truncatula (gi|113205273|), Solanum demissum (gi|48057670|), and Arabidopsis thaliana (gi|2500376|), respectively. Accumulation of the transcriptional product in root tips at the four-leaf stage was about two- or fivefold higher than that of the embryonic axis and leaf. At the same time, SOL34 was responsive to low temperature, and demonstrated enhanced transcriptional levels in embryonic axes imbibed at 4°C for 12 h. However, these characteristics of SOL34 gene expression induced by low temperature were detected only in root tips and embryonic axes, but not in leaves. The SOL34 gene was then transferred into Arabidopsis in both sense and antisense orientations, under the control of the cauliflower mosaic virus (CaMV) 35S promoter for functional analysis. Transgenic plants overexpressing SOL34 were more sensitive to cold stress than wild-type plants; while transgenic plants carrying the antisense construct exhibited higher levels of resistance to freezing temperature than control plants. This suggested that SOL34 might play a ‘negative’ role in metabolic processes for adaptation of seeds to low-temperature stress during imbibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alle T, Shen P, Samsel L, Liu R, Lindahl L, Zengel JM (1999) Phylogenetic analysis of L4-mediated autogenous control of the S10 ribosomal protein operon. J Bacteriol 181:6124–6132

    Google Scholar 

  • Bayliss FT, Ingraham JL (1974) Mutation in conferring streptomycin and cold sensitivity by affecting ribosome formation and function. J Bacteriol 118:319–328

    CAS  PubMed  Google Scholar 

  • Bedi S, Basra AS (1993) Chilling injury in germination seeds: basic mechanisms and agricultural implications. Seed Sci Res 3:219–229. doi:10.1017/S0960258500001847

    Article  Google Scholar 

  • Bungard RA, Mcneil D, Morton D (1997) Effect of chilling, light and nitrogen-containing compounds on germination, rate of germination and seed imbibition of Clematis vitalba L. Ann Bot (Lond) 79:643–650. doi:10.1006/anbo.1996.0391

    Article  Google Scholar 

  • Degenhardt RF, Bonham-Smith PC (2008) Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are desperately required for normal development. Plant Physiol 147:128–142. doi:10.1104/pp. 107.111799

    Article  CAS  PubMed  Google Scholar 

  • Devitt ML, Stafstrom JP (1995) Cell cycle regulation during growth-dormancy cycle in pea axillary buds. Plant Mol Biol 29:255–265. doi:10.1007/BF00043650

    Article  CAS  PubMed  Google Scholar 

  • Hansen FG, Hansen EB, Atlung T (1982) The nucleotide sequence of the DNA gene promoter and of the adjacent rpmH gene, coding for the ribosomal protein L34 of Escherichia coli. EMBO J 1:1043–1048

    CAS  PubMed  Google Scholar 

  • Hartmann K, Kroob C, Mollwo A (1997) Phytochrome-mediated photocontrol of the germination of the scentless mayweed, Matricaaria inodora L, and its sensitization by nitrate and temperature. J Photochem Photobiol B 40:240–252. doi:10.1016/S1011-1344(97) 00064-X

    Article  CAS  Google Scholar 

  • Haschemeyer AE, Persell R, Smith MA (1979) Effect of temperature on protein synthesis in fish of the Galapagos and Perlas Islands. Comp. Biochem. Physiol, Part B Biochem. Mol Biol 64:91–95a

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE (2002) Variation in traits associated with chilling tolerance during emergence in cowpea germplasm. Field Crops Res 77:99–113. doi:10.1016/S0378-4290(02) 00059-X

    Article  Google Scholar 

  • Jonathan T, Zarka VG, Heather A, Van B, Sarah F, Michael FT (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211. doi:10.1111/j.1365-313X.2004.02288.x

    Article  Google Scholar 

  • Kashiwagi K, Igarashi K (1988) Adjustment of polyamine contents in Escherichia coli. J Bacteriol 170:3131–313s

    CAS  PubMed  Google Scholar 

  • McIntosh KB, Bonham-Smith PG (2006) Ribosomal protein gene regulation: what about plants? Can J Bot 84:342–362. doi:10.1139/B06-014

    Article  CAS  Google Scholar 

  • Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25:247–259. doi:10.1046/j.1365-313x.2001.00947.x

    Article  CAS  PubMed  Google Scholar 

  • Kim KY, Park SW, Chung YS, Chung CH, Kim JI, Lee JH (2004) Molecular cloning of low-temperature-inducible ribosomal protein from soybean. J Exp Bot 55:1153–1155. doi:10.1093/jxb/erh125

    Article  CAS  PubMed  Google Scholar 

  • Kirsten R, Jangle O, Sarah JG, Dainel G, Zarka OS, Michael FT (1998) Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance. Sci 280:104–106. doi:10.1126/science.280.5360.104

    Article  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257. doi:10.1146/annurev.physiol.67.040403.103635

    Article  PubMed  Google Scholar 

  • Kyauk H, Hopper NW, Brigham RD (1995) Effects of temperature and presoaking on germination root length and shoot length of sesame. Environ Exp Bot 35:345–351. doi:10.1016/0098-8472(95) 00013-X

    Article  Google Scholar 

  • Lang ML, Zhang YX, Chai TY (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158. doi:10.1016/j.gene.2005.07.037

    Article  CAS  Google Scholar 

  • Liang P, Zhang CK, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene. 395:111–118

    Google Scholar 

  • Liu LN, Zhang SC, Liu ZH, Li HY, Liu M, Wang YJ, Ma LF (2005) Ribosomal proteins L34 and S29 of amphioxus Branchiostoma belcheritsingtauense: cDNA cloning and gene copy number. Acta Biochim Pol 52:857–862

    CAS  PubMed  Google Scholar 

  • McIntosh KB, Bonham-Smith PC (2005) The two ribosomal protein L23A genes are differently transcribed in Arabidopsis thaliana. Genome. 48:443–454. doi:10.1139/g05-007

    Article  CAS  PubMed  Google Scholar 

  • Money T, Reader S, Qu LJ, Bohnert RP, Moore G (1996) AFLP-based mRNA fingerprinting. Nucleic Acids Res 24:2626–2617. doi:10.1093/nar/24.13.2616

    Article  Google Scholar 

  • Moorthamer M, Chaudhuri B (1999) Identification of Ribosomal protein L34 as a Novel Cdk5 inhibitor. Biochem Biophys Res Commun 255:631–638. doi:10.1006/bbrc.1999.0145

    Article  CAS  PubMed  Google Scholar 

  • Old IG, Margarita D, Saint GI (1992) Nucleotide sequence of the Borrelia burgdorferi rpmH gene encoding ribosomal protein L34. Nucleic Acids Res 20:6097–6097. doi:10.1093/nar/20.22.6097

    Article  CAS  PubMed  Google Scholar 

  • Panagiotidis CA, Huang SC, Canellakis ES (1995) Relationship of the expression of the S20 and L34 ribosomal proteins to polyamine biosynthesis in Escherichia coli. Int J Biol 27:157–168

    CAS  Google Scholar 

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76. doi:10.1023/A:1006291330661

    Article  CAS  Google Scholar 

  • Regenberg B, Grotkjær T, Winther O, Fausbll A, Akesson M, Bro C, Hansen LK, Brunak S, Nielsen J (2006) Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol. 7:R107

    Article  PubMed  Google Scholar 

  • Shukla HD (2006) Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response. Proteome Sci 4:6. doi:10.1186/1477-5956-4-6

    Article  PubMed  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. Bioessays 20:49–57. doi:10.1002/(SICI) 1521-1878(199801) 20:1<49::AID-BIES8>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  • Umezawa T, Mizuno K, Fujimura T (2002) Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant Cell Environ 25:1617–1625. doi:10.1046/j.1365-3040.2002.00939.x

    Article  CAS  Google Scholar 

  • Vaccaro MC (2003) Sequencing and characterization of the Xenopus laevis ribosomal protein L34 cDNA. Gene 318:163–167. doi:10.1016/S0378-1119(03) 00771-6

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Transplant Sci 10:88–94

    CAS  Google Scholar 

  • Zhang QC, Zheng GH, Lin J (1989) Effect of idination on research of soybean seeds to imbibitional chilling injury. Chin Sci Bull 34:1667–1668

    Google Scholar 

  • Zheng GH (1988) Study on the imbibitional chilling injury and the reparation of damaged membrane systems in soybean seeds. Scientia Sin B 31:936–943

    Google Scholar 

Download references

Acknowledgments

We are grateful to Professor Xiaobai Jin for his critical reading and comments on this manuscript and we are thankful to Xiaolang Han for assistance in performing some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Bao Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, LB., Li, SY., Yang, GX. et al. Overexpression of Soybean (Glycine max (L.) Meer.) L34 Gene Leads to Reduced Survival to Cold Stress in Transgenic Arabidopsis . Plant Mol Biol Rep 28, 41–48 (2010). https://doi.org/10.1007/s11105-009-0094-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-009-0094-3

Keywords

Navigation