Advertisement

Genome Size of Three Miscanthus Species

  • A. Lane Rayburn
  • Joseph Crawford
  • Charlotte M. Rayburn
  • John A. Juvik
Article

Abstract

Environmental and economic factors have stimulated research in the area of bioenergy crops. While many plants have been identified as potential energy crops, one species in particular, Miscanthus x giganteus, appears to have the most promise. As researchers attempt to exploit and improve M. x giganteus, genome information is critical. In this study, the genome size of M. x giganteus and its two progenitor species were examined by flow cytometry and stomatal cell analyses. M. x giganteus was found to have genome size of 7.0 pg while Miscanthus sinensis and Miscanthus sacchariflorus were observed to have genome sizes of 5.5 and 4.5 pg respectively with stomatal size correlating with genome size. Upon computing the two tetraploid × diploid hybrids theoretical genome sizes, the data presented in this paper supports the hypothesis of the union of a 2x M. sacchariflorus and a 1x M. sinensis gamete for the formation of the allotriploid, M. x giganteus. Such genomic information provides basic knowledge that is important in M. x giganteus plant improvement.

Keywords

Flow cytometry Nuclear DNA content Guard cells Miscanthus 

Notes

Acknowledgements

The authors thank the Illinois Council on Food and Agricultural Research (C-FAR) SRI grant entitled “Biomass Energy Crops for Power and Heat Generation in Illinois: Diversifying Cropping, Improving Energy Security and Benefiting the Environment” for providing funding for this research. The authors thank Dr. B. Pilas of the Flow Cytometry Facility, a resource of the University of Illinois Biotechnology Center, for her assistance.

References

  1. Adati S, Shiotani I. Cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ. 1962;25:1–24.Google Scholar
  2. Aryavand A, Ehdaie B, Tran B, Waines JG. Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet Res Crop Evol. 2003;50:175–82.CrossRefGoogle Scholar
  3. Beale CV, Long SP. Seasonal dynamics of nutrient accumulation and partitioning in the C-4 grass Miscanthus x giganteus and Spartina cynosuroides. Biomass Bioenergy. 1997;12:419–28.CrossRefGoogle Scholar
  4. Beale CV, Bint DA, Long SP. Leaf photosynthesis in the C-4 grass Miscanthus x giganteus, growing in the cool temperate climate of southern England. J Exp Biol. 1996;47:267–73.Google Scholar
  5. Beale CV, Morison JI, Long SP. Water use efficiencies of c4 perennial grasses in a temperate climate. Agr & Forest Meteorology. 1999;96:103–15.CrossRefGoogle Scholar
  6. Bennett MD. Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond B. 1972;181:109–35.CrossRefGoogle Scholar
  7. Chung J, Lee JH, Arumuganathan K, Graef GL, Specht JE. Relationship between nuclear DNA content and seed and leaf size inn soybean. Theor Appl Genet. 1998;96:1064–8.CrossRefGoogle Scholar
  8. Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, et al. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J. 2001;93:1013–9.Google Scholar
  9. Heaton E, Voigt T, Long SP. A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy. 2004;27:21–30.CrossRefGoogle Scholar
  10. Heaton E, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol. 2008;14:1–15.CrossRefGoogle Scholar
  11. Hirayoshi I, Nishikawa K, Kato R, Kitagawa M. Cytogenetical forage studies on forage plants (III): chromosome numbers in Miscanthus. Jap Jour Breeding. 1955;5:49–50.Google Scholar
  12. Hirayoshi I, Nishikawa K, Hakura. Cytogenetical forage studies on forage plants (VIII): 3x- and 4x-hybrids raized from the cross, Miscanthus sinensis var. condensatus x M. sacchariflorus. Res Bull Fac Agr Gifu Univ. 1960;12:82–8.Google Scholar
  13. Hodkinson TR, Chase MW, Renvoize SA. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogonae, Poaceae) using AFLP and ISSR PCR. Ann Bot. 2002a;89:627–36.PubMedCrossRefGoogle Scholar
  14. Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA. Phylogenetics of Miscanthus, Saccharum related genera (Saccharinae, Andropogonae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnl-F intergenic spacers. J Plant Res. 2002b;115:381–92.PubMedCrossRefGoogle Scholar
  15. Jeschke MR, Tranel PJ, Rayburn AL. DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection. Weed Sci. 2003;51:1–3.CrossRefGoogle Scholar
  16. Lafferty J, Lelley T. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breed. 1994;113:246–9.CrossRefGoogle Scholar
  17. Lewandowski I, Clifton-Brown JC, Surlock JMO, Huisman S. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 2000;19:209–27.CrossRefGoogle Scholar
  18. Linde-Laursen I. Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecfic hybrid. Hereditas 1993;119:297–300.CrossRefGoogle Scholar
  19. McMurphy LM, Rayburn AL. Genome size variation in maize populations selected for cold tolerance. Plant Breed. 1991;106:190–5.CrossRefGoogle Scholar
  20. Mishra MK. Stomatal characteristics at different ploidy levels in Coffea L. Ann Bot. 1997;80:689–92.CrossRefGoogle Scholar
  21. Nelson JM, Lane B, Freeling M. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the dorsoventral axis. Development 2002;129:4581–9.PubMedGoogle Scholar
  22. Ozkan H, Tuna M, Arumuganathan K. Nonadditive changes in genome size during allopolyploidization in wheat (Aegilops-Triticum) group. J Hered. 2003;94:260–4.PubMedCrossRefGoogle Scholar
  23. Price S. Accessory chromosomes in Miscanthus floridulus. J Hered. 1963;54:13–6.Google Scholar
  24. Rayburn AL. Comparative studies of genome content. In: Zimmer EA, White TJ, Cann RL, Wilson AC, editors. Methods of enzymology volume 224. San Diego: Academic; 1993. p. 204–12.Google Scholar
  25. Rayburn AL, Auger JA, Benzinger EA, Benzinger AG0. Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot. 1989;40:1179–83.CrossRefGoogle Scholar
  26. Rayburn AL, Biradar DP, Nelson RL, McCloskey R, Yeater KM. Documenting intraspecific genome size variation in soybean. Crop Sci. 2004;44:261–4.Google Scholar
  27. Rayburn AL, McCloskey R, Tatum TC, Bollero GA, Jeschke MR, Tranel PJ. Genome size analysis of weedy Amaranthus species. Crop Sci. 2005;45:2557–62.CrossRefGoogle Scholar
  28. Tatum TC, Nunez L, Kushad MM, Rayburn AL. Genome size variation in pumpkin (Cucurbita sp.). Ann Appl Bot. 2006;149:145–51.CrossRefGoogle Scholar
  29. Thomson JA, Alonso A, Miguel E. Clarification of the taxonomic status and relationships of Pteridium caudatum (Dennstaedtiaceae) in Central and South America. Bot J Lenn Soc. 2002;140:237–48.CrossRefGoogle Scholar
  30. Trucco T, Jeschke MR, Rayburn AL, Tranel PJ. Amaranthus hybrids can be pollinated frequently by A. tuberculatus under field conditions. Heredity 2005;94:410–6.CrossRefGoogle Scholar
  31. Wetzel JB, Rayburn AL. Use of fluorescence genomic in situ hybridization (GISH) to detect the presence of alien chromatin in wheat lines differing in nuclear DNA content. Cytometry 2000;41:36–40.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Lane Rayburn
    • 1
  • Joseph Crawford
    • 2
  • Charlotte M. Rayburn
    • 2
  • John A. Juvik
    • 2
  1. 1.Department of Crop SciencesUniversity of IllinoisUrbanaUSA
  2. 2.Department of Natural Resources and Environmental ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations