Skip to main content
Log in

Rice rhizosphere microbiome is more diverse but less variable along environmental gradients compared to bulk soil

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Despite the importance of the rice rhizosphere microbiota for soil functions and crop productivity, little is known about the differences in the diversity, structure, and functions of these communities compared to surrounding bulk soils and these effects on a broad scale.

Methods

We compared archaeal and bacterial community diversity, structure and functions in the rice rhizosphere versus bulk soils from 50 sites across 900 km in eastern China, and explored their interkingdom interactions and keystone taxa.

Results

The rhizosphere microbiome had higher α-diversity, lower β-diversity and weaker edaphic distance-decay patterns than bulk microbiome, indicating a homeostatic effects of rice roots. Compared with the bulk interkingdom networks, the rhizosphere networks had more links between archaea and bacteria, higher complexity and stability. The keystone taxa in the rhizosphere were shifted towards sulfate-reducing, iron-reducing, and carbon-degrading microbes, potentially offering benefits to the host plants. Microbial community assembly in bulk and rhizosphere soils was largely stochastic at the community level, but with deterministic for specific finer taxonomic taxa (e.g. Haliangium) in the rhizosphere. Functional predictions revealed that the rhizosphere was enriched in genes for carbon, sulfur, and iron metabolism, in contrast to reduced nitrogen metabolism genes.

Conclusions

Rice root-driven selection of specialized microbial taxa promotes higher α-diversity and a more stable microbial community, characterized by intensive functionality in iron reduction and nutrient cycling beyond nitrogen metabolism. These findings deepen our understanding of microbial distribution patterns in rice rhizosphere under semi-aquatic, low-oxygen conditions and may offer new insights into sustainable cropland management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw sequence data of this study have been deposited into the public NCBI database (https://dataview.ncbi.nlm.nih.gov/object/PRJNA910480) under BioProject ID PRJNA910480.

References

  • Abate N, Kibret K (2016) Effects of land use, soil depth and topography on soil physicochemical properties along the toposequence at the Wadla Delanta Massif, Northcentral Highlands of Ethiopia. Environ Pollut 5:57–71

    Article  CAS  Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W (2013) Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol Biochem 57:30–42

    Article  CAS  Google Scholar 

  • Arth I, Frenzel P (2000) Nitrification and denitrification in the rhizosphere of rice: the detection of processes by a new multi-channel electrode. Biol Fertil Soils 31:427–435

    Article  CAS  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    Article  CAS  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Med 3:361–362

    Article  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Dash PK, Nayak AK, Mohanty S, Baig MJ, Sarkar RK, Rao KS (2013) Impact of elevated CO2 and temperature on soil C and N dynamics in relation to CH4 and N2O emissions from tropical flooded rice (Oryza sativa L.). Sci Total Environ 461–462:601–611

    Article  PubMed  Google Scholar 

  • Blanchet FG, Legendre P, Maranger R, Monti D, Pepin P (2011) Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166:357–368

    Article  PubMed  Google Scholar 

  • Borruso L, Bacci G, Mengoni A, De Philippis R, Brusetti L (2014) Rhizosphere effect and salinity competing to shape microbial communities in Phragmites australis (Cav.) Trin. ex-Steud. FEMS Microbiol Lett 359:193–200

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

  • Cao T, Luo Y, Shi M, Tian X, Kuzyakov Y (2024) Microbial interactions for nutrient acquisition in soil: miners, scavengers, and carriers. Soil Biol BiochemSoil Biol Biochem 188:109215

    Article  CAS  Google Scholar 

  • Ceja-Navarro JA, Wang Y, Ning D, Arellano A, Ramanculova L, Yuan MM, Byer A, Craven KD, Saha MC, Brodie EL, Pett-Ridge J, Firestone MK (2021) Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome 9:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang F, He SS, Dang CY (2022) Assisted selection of biomarkers by linear discriminant analysis effect size (LEfSe) in microbiome data. J Vis Exp 183:e61715

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B 366:2351–2363

  • Chen JZ, Huang XL, Sun QW, Liu JM (2023) Bulk soil microbial reservoir or plant recruitment dominates rhizosphere microbial community assembly: evidence from the rare, endangered Lauraceae species Cinmaomum migao. Ecol Indic 148:110071

    Article  CAS  Google Scholar 

  • Costa R, Gomes NCM, Peixoto RS, Rumjanek N, Berg G, Mendonça-Hagler LCS, Smalla K (2006) Diversity and antagonistic potential of Pseudomonas spp. associated to the rhizosphere of maize grown in a subtropical organic farm. Soil Biol Biochem 38:2434–2447

    Article  CAS  Google Scholar 

  • de Vries FT, Wallenstein MD (2017) Below-ground connections underlying above-ground food production: a framework for optimising ecological connections in the rhizosphere. J Ecol 105:913–920

    Article  Google Scholar 

  • De Zelicourt A, Al-Yousif M, Hirt H (2013) Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant 6:242–245

    Article  PubMed  Google Scholar 

  • Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J (2012) Molecular ecological network analyses. BMC Bioinformatics 13:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Zhu YG (2019) Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol 95:fiz040

  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Modell 196:483–493

    Article  Google Scholar 

  • Edgar R (2010) Usearch. Lawrence Berkeley National Lab. (LBNL), Berkeley

  • Erdős L, Knowles A, Yau HT, Yin J (2012) Spectral statistics of Erdős-Rényi graphs II: eigenvalue spacing and the extreme eigenvalues. Commun Math Phys 314:587–640

    Article  Google Scholar 

  • Fan K, Cardona C, Li Y, Shi Y, Xiang X, Shen C, Wang H, Gilbert JA, Chu H (2017) Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol Biochem 113:275–284

    Article  CAS  Google Scholar 

  • Fan K, Weisenhorn P, Gilbert JA, Chu H (2018a) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260

    Article  CAS  Google Scholar 

  • Fan K, Weisenhorn P, Gilbert JA, Shi Y, Bai Y, Chu H (2018b) Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem 121:185–192

    Article  CAS  Google Scholar 

  • Fan L, Schneider D, Dippold MA, Poehlein A, Wu W, Gui H, Ge T, Wu J, Thiel V, Kuzyakov Y, Dorodnikov M (2021) Active metabolic pathways of anaerobic methane oxidation in paddy soils. Soil Biol Biochem 156:108215

    Article  CAS  Google Scholar 

  • Friedman J, Alm EJ (2012) Inferring Correlation Networks from Genomic Survey Data. PLoS Comput Biol 8:e1002687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Song B, Li A, Wu Q, Huang H, Li N, Yang Y, Adams JM, Yang L (2022) Higher pH is associated with enhanced co-occurrence network complexity, stability and nutrient cycling functions in the rice rhizosphere microbiome. Environ Microbiol 24:6200–6219

    Article  CAS  PubMed  Google Scholar 

  • He R, Zeng J, Zhao D, Wang S, Wu QL (2022) Decreased spatial variation and deterministic processes of bacterial community assembly in the rhizosphere of Phragmites australis across the Middle-Lower Yangtze plain. Mol Ecol 31:1180–1195

    Article  CAS  PubMed  Google Scholar 

  • Hester ER, Vaksmaa A, Valè G, Monaco S, Jetten MS, Lüke C (2022) Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiol Ecol 98:fiac018

  • Hou J, Wu L, Liu W, Ge Y, Mu T, Zhou T, Li Z, Zhou J, Sun X, Luo Y, Christie P (2020) Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China. Sci Total Environ 730:139116

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Sun W, Zhao Y, Zhu J, Yang R, Zou Z, Ding F, Su J (2007) Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 139:336–345

    Article  CAS  Google Scholar 

  • Hussain Q, Pan G, Liu Y, Zhang A, Li L, Zhang X, Jin Z (2012) Microbial community dynamics and function associated with rhizosphere over periods of rice growth. Plant Soil Environ 58:55–61

    Article  CAS  Google Scholar 

  • Jiao S, Chen W, Wang J, Du N, Li Q, Wei G (2018) Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Kämpfer P, Young CC, Arun AB, Shen FT, Jäckel U, Rosselló-Mora R, Lai WA, Rekha PD (2006) Pseudolabrys taiwanensis gen. nov., sp. nov., an alphaproteobacterium isolated from soil. Int J Syst Evol Microbiol 56:2469–2472

    Article  PubMed  Google Scholar 

  • Kumar A, Kuzyakov Y, Pausch J (2016) Maize rhizosphere priming: field estimates using 13C natural abundance. Plant Soil 409:87–97

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360

    Article  CAS  Google Scholar 

  • Large P (2012) Methylotrophy and methanogenesis. Aspects of microbiology 8. American Society for Microbiology. Van Nostrand Reinhold, Wokingham

  • Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Yannarell AC, Mackie RI (2014) Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE 9:e112609

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Yu H, Sun X, Yang J, Wang D, Shen L, Pan Y, Wu Y, Wang Q, Zhao Y (2019) Effects of sulfur application on cadmium bioaccumulation in tobacco and its possible mechanisms of rhizospheric microorganisms. J Hazard Mater 368:308–315

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Long M, Hou Y, Li W, Qin X, Zhang B, Wen T, Cui Y, Wang Z, Liao Y (2023) Root exudation processes induce the utilization of microbial-derived components by rhizoplane microbiota under conservation agriculture. Soil Biol Biochem 178:108956

    Article  CAS  Google Scholar 

  • Li Y, Gu X, Yong T, Yang W (2024) A global synthesis reveals additive density design drives intercropping effects on soil N-cycling variables. Soil Biol Biochem 191:109318

    Article  CAS  Google Scholar 

  • Liang-yuan Z, Jing-xiang T, Min L (2015) Effects of aquatic macrophyte planting on functional diversity of microbial community in sediment. J Yangtze River Sci Res Inst 32:81–86

    Google Scholar 

  • Ling N, Wang T, Kuzyakov Y (2022) Rhizosphere bacteriome structure and functions. Nat Commun 13:836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ge T, van Groenigen KJ, Yang Y, Wang P, Cheng K, Zhu Z, Wang J, Li Y, Guggenberger G, Sardans J, Penuelas J, Wu J, Kuzyakov Y (2021) Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Commun Earth Environ 2:154

    Article  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Lovell CR, Bagwell CE, Czákó M, Márton L, Piceno YM, Ringelberg DB (2001) Stability of a rhizosphere microbial community exposed to natural and manipulated environmental variability. FEMS Microbiol Ecol 38:69–76

    Article  CAS  Google Scholar 

  • Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes PC, Xu J, Gilbert JA (2016) Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J 10:1891–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zarebanadkouki M, Kuzyakov Y, Blagodatskaya E, Pausch J, Razavi BS (2018) Spatial patterns of enzyme activities in the rhizosphere: effects of root hairs and root radius. Soil Biol Biochem 118:69–78

    Article  CAS  Google Scholar 

  • Maclean JL, Dawe DC, Hardy B, Hettel GP (2002) Rice almanac: source book for the most important activity on earth. Third edition. CABI Publishing, Wallingford and International Rice Research Institute (IRRI), Metro Manila

  • Mao C, Kou D, Chen L, Qin S, Zhang D, Peng Y, Yang Y (2020) Permafrost nitrogen status and its determinants on the Tibetan Plateau. Glob Chang Biol 26:5290–5302

    Article  PubMed  Google Scholar 

  • Mapelli F, Marasco R, Fusi M, Scaglia B, Tsiamis G, Rolli E, Fodelianakis S, Bourtzis K, Ventura S, Tambone F, Adani F, Borin S, Daffonchio D (2018) The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. ISME J 12:1188–1198

    Article  PubMed  PubMed Central  Google Scholar 

  • McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, Nielsen JL (2016) Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol 18:50–64

    Article  CAS  PubMed  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau D, Bardgett RD, Finlay RD, Jones DL, Philippot L (2019) A plant perspective on nitrogen cycling in the rhizosphere. Funct Ecol 33:540–552

    Article  Google Scholar 

  • Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Yang J, McManus GB, Lin S, Zhang W (2020) Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnol Oceanogr 65:1103–1115

    Article  Google Scholar 

  • Pantigoso HA, Newberger D, Vivanco JM (2022) The rhizosphere microbiome: plant–microbial interactions for resource acquisition. J Appl Microbiol 133:2864–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pausch J, Kuzyakov Y (2011) Photoassimilate allocation and dynamics of hotspots in roots visualized by 14C phosphor imaging. J Plant Nutr Soil Sci 174:12–19

    Article  CAS  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Nain L, Pandey AK, Nayak S (2010) Exploring the ecological significance of microbial diversity and networking in the rice ecosystem. In: P Dion (ed) Soil Biology and Agriculture in the Tropics. Springer Berlin Heidelberg, Berlin, Heidelberg

  • Qu Q, Zhang Z, Peijnenburg WJGM, Liu W, Lu T, Hu B, Chen J, Chen J, Lin Z, Qian H (2020) Rhizosphere Microbiome Assembly and Its Impact on Plant Growth. J Agric Food Chem 68:5024–5038

    Article  CAS  PubMed  Google Scholar 

  • Raes EJ, Karsh K, Sow SLS, Ostrowski M, Brown MV, van de Kamp J, Franco-Santos RM, Bodrossy L, Waite AM (2021) Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat Commun 12:2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehmani MIA, Ding C, Li G, Ata-Ul-Karim ST, Hadifa A, Bashir MA, Hashem M, Alamri S, Al-Zubair F, Ding Y (2021) Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River Valley, China. Journal of King Saud University - Science 33:101599

    Article  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez C, Minamisawa K (2019) Nitrogen cycling in soybean rhizosphere: sources and sinks of nitrous oxide (N2O). Front Microbiol 10

  • Sang C, Xia Z, Sun L, Sun H, Jiang P, Wang C, Bai E (2021) Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest. Ecol Processes 10:66

    Article  Google Scholar 

  • Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online 8:23–74

    Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt JE, Kent AD, Brisson VL, Gaudin ACM (2019) Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7:146

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen C, Wang J, Jing Z, Qiao N-H, Xiong C, Ge Y (2022) Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness. Sci Total Environ 818:151737

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK (2016) The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol Lett 19:926–936

    Article  PubMed  Google Scholar 

  • Somenahally AC, Hollister EB, Yan W, Gentry TJ, Loeppert RH (2011) Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ Sci Technol 45:8328–8335

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhang B, Ning D, Zhang Y, Dai T, Wu L, Li T, Liu W, Zhou J, Wen X (2021) Seasonal dynamics of the microbial community in two full-scale wastewater treatment plants: diversity, composition, phylogenetic group based assembly and co-occurrence pattern. Water Res 200:117295

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. https://www.R-project.org

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  Google Scholar 

  • Tian G, Qiu H, Li D, Wang Y, Zhen B, Li H, Niu Q, Qi D, Zhou X (2022a) Little environmental adaptation and high stability of bacterial communities in rhizosphere rather than bulk soils in rice fields. Appl Soil Ecol 169:104183

    Article  Google Scholar 

  • Tian L, Chen P, Gao Z, Gao X, Feng B (2022b) Deciphering the distinct mechanisms shaping the broomcorn millet rhizosphere bacterial and fungal communities in a typical agricultural ecosystem of Northern China. Plant Soil 474:469–484

    Article  CAS  Google Scholar 

  • Wang C, Zheng M, Song W, Wen S, Wang B, Zhu C, Shen R (2017) Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol Biochem 113:240–249

    Article  Google Scholar 

  • Wang Q, Zhou G, Qin Y, Wang R, Li H, Xu F, Du Y, Zhao C, Zhang H, Kong Q (2021a) Sulfate removal performance and co-occurrence patterns of microbial community in constructed wetlands treating saline wastewater. J Water Process Eng 43:102266

    Article  Google Scholar 

  • Wang Y, Huang Q, Gao H, Zhang R, Yang L, Guo Y, Li H, Awasthi MK, Li G (2021b) Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard. Chemosphere 275:130093

    Article  CAS  PubMed  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Zhu Z, Wei L, Wu J, Ge T (2019) Biogeochemical cycles of key elements in the paddy-rice rhizosphere: Microbial mechanisms and coupling processes. Rhizosphere 10:100145

    Article  Google Scholar 

  • Wei L, Zhu Z, Razavi BS, Xiao M, Dorodnikov M, Fan L, Yuan H, Yurtaev A, Luo Y, Cheng W, Kuzyakov Y, Wu J, Ge T (2022) Visualization and quantification of carbon “rusty sink” by rice root iron plaque: mechanisms, functions, and global implications. Glob Chang Biol 28:6711–6727

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Naeem S, Elser J, Bai Y, Huang J, Kang L, Pan Q, Wang Q, Hao S, Han X (2015) Testing biodiversity-ecosystem functioning relationship in the world’s largest grassland: overview of the IMGRE project. Landsc Ecol 30:1723–1736

    Article  Google Scholar 

  • Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ (2021) Host selection shapes crop microbiome assembly and network complexity. New Phytol 229:1091–1104

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Kuramae EE, de Hollander M, Klinkhamer PGL, van Veen JA (2017) Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J 11:56–66

    Article  PubMed  Google Scholar 

  • Yi W, You J, Zhu C, Wang B, Qu D (2013) Diversity, dynamic and abundance of Geobacteraceae species in paddy soil following slurry incubation. Eur J Soil Biol 56:11–18

    Article  Google Scholar 

  • Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021) Climate warming enhances microbial network complexity and stability. Nat Clim Chang 11:343–348

    Article  Google Scholar 

  • Zhang Q, Hou X, Li FY, Niu J, Zhou Y, Ding Y, Zhao L, Li X, Ma W, Kang S (2014) Alpha, beta and gamma diversity differ in response to precipitation in the inner Mongolia Grassland. PLoS ONE 9:e93518

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Adams JM, Shi Y, Yang T, Sun R, He D, Ni Y, Chu H (2017) Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environ Microbiol 19:3649–3659

    Article  PubMed  Google Scholar 

  • Zhang B, Zhang J, Liu Y, Guo Y, Shi P, Wei G (2018a) Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Sci Total Environ 627:20–27

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zhang J, Liu Y, Shi P, Wei G (2018b) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol Biochem 118:178–186

    Article  CAS  Google Scholar 

  • Zhang J, Zhang B, Liu Y, Guo Y, Shi P, Wei G (2018c) Distinct large-scale biogeographic patterns of fungal communities in bulk soil and soybean rhizosphere in China. Sci Total Environ 644:791–800

    Article  CAS  PubMed  Google Scholar 

  • Zhang CJ, Pan J, Liu Y, Duan CH, Li M (2020a) Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Hou F, Xie W, Wang K, Zhou X, Zhang D, Zhu X (2020b) Interaction and assembly processes of abundant and rare microbial communities during a diatom bloom process. Environ Microbiol 22:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Zhen Z, Li G, Chen Y, Wei T, Li H, Huang F, Huang Y, Ren L, Liang Y, Zhang D, Lin Z, Li Z (2023) Accelerated nitrification and altered community structure of ammonia-oxidizing microorganisms in the saline-alkali tolerant rice rhizosphere of coastal solonchaks. Appl Soil Ecol 189:104978

    Article  Google Scholar 

  • Zheng W, Zhao Z, Gong Q, Zhai B, Li Z (2018) Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol Biochem 125:54–63

    Article  CAS  Google Scholar 

  • Zhong Y, Sorensen PO, Zhu G, Jia X, Liu J, Shangguan Z, Wang R, Yan W (2022) Differential microbial assembly processes and co-occurrence networks in the soil-root continuum along an environmental gradient. iMeta 1: e18.

  • Zhou J, Ning D (2017) Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol Mol Biol Rev 81: https://doi.org/10.1128/mmbr.00002-00017

  • Zhou X, Wang JT, Zhang ZF, Li W, Chen W, Cai L (2020) Microbiota in the rhizosphere and seed of rice from China, with reference to their transmission and biogeography. Front Microbiol 11:995

Download references

Acknowledgements

We would like to thank the RUDN University Strategic Academic Leadership Program for supporting, and Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (020914380079), the Special Fund of Jiangsu Province Carbon Peak and Carbon Neutral Technology Innovation (Grant Nos. BK20220037) and Provincial Policy Guidance Program -Jiangsu ‘Hundred Talents Program’ (SBX2020010098).

Author information

Authors and Affiliations

Authors

Contributions

Yaping Guo: Methodology, Data curation, Formal analysis, Roles/Writing—original draft, Investigation, Visualization. Jonathan M. Adams: Funding acquisition, Conceptualization, Supervision, Validation, Project administration, Writing—review & editing. Lin Yang: Conceptualization, Funding acquisition, Project administration, Writing—review & editing. Yakov Kuzyakov: Writing—review & editing. Bin song: Investigation. Na Li: Investigation. Zihao Liu: Investigation.

Corresponding authors

Correspondence to Jonathan M. Adams or Lin Yang.

Ethics declarations

Competing interest

No conflicts of interest exist in the submission of this manuscript, which has been approved by all authors for publication.

Additional information

Responsible Editor: Guiyao Zhou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 74.7 kb)

Supplementary file2 (PDF 1.91 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Kuzyakov, Y., Li, N. et al. Rice rhizosphere microbiome is more diverse but less variable along environmental gradients compared to bulk soil. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06728-1

Keywords

Navigation