Skip to main content
Log in

Exchange of volatile organic compounds between the atmosphere and the soil

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Volatile organic compounds (VOCs) play a crucial role in understanding soil ecology and the atmospheric environment. However, the biochemical cycles of VOCs in soil systems and their relationship to atmospheric VOC exchange remain unclear. The soil system serves as a primary site for the generation, emission, and uptake of VOCs, yet these processes lack sufficient understanding.

Scope

This review aims to provide a comprehensive overview of the exchange of VOCs between the soil and the atmosphere. We explore the mechanisms governing the generation, emission, and uptake of VOCs in soils, quantitatively summarizing available data on emission and uptake. Additionally, we highlight common and specific VOCs emitted by various soil sources (litter, roots, bare soil, and soil microbes) and examine their interactions.

Conclusions

The composition and emission rates of VOCs display significant variability across different soils, attributed in part to variations in the contributions of different VOC sources within the soils. Litter and roots predominantly release terpenes, benzenoids, and alcohols, while bare soil and microbes emit higher proportions of alkanes, esters, and alcohols. Despite often being overlooked, soils serve as essential sinks for VOCs, and global environmental changes may reshape patterns of soil VOC sources and sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaltonen H, Aalto J, Kolari P, Pihlatie M, Pumpanen J, Kulmala M, Nikinmaa E, Vesala T, Bäck J (2013) Continuous VOC flux measurements on boreal forest floor. Plant Soil 369:241–256

    Article  CAS  Google Scholar 

  • Aaltonen H, Pumpanen J, Pihlatie M (2011) Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn. Agric for Meteorol 151:682–691

    Article  ADS  Google Scholar 

  • Abis L, Loubet B, Ciuraru R, Lafouge F, Houot S, Nowak V, Tripied J, Dequiedt S, Maron PA, Sadet-Bourgeteau S (2020) Reduced microbial diversity induces larger volatile organic compound emissions from soils. Sci Rep 10:6104

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta Navarro JC, Smolander S, Struthers H, Zorita E, Ekman AM, Kaplan JO, Guenther A, Arneth A, Riipinen I (2014) Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. J Geophys Res: Atmos 119(11):6867-6885

  • Albers CN, Kramshøj M, Rinnan R (2018) Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils. Biogeosciences 15:3591–3601

    Article  ADS  CAS  Google Scholar 

  • Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: Biogeochemical sources and Role in Atmospheric Chemistry. Science 276:1052–1058

    Article  CAS  Google Scholar 

  • Asensio D, Peñuelas J, Filella I, Llusià J (2007a) On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261

    Article  CAS  Google Scholar 

  • Asensio D, Peñuelas J, Llusià J, Ogaya R, Filella I (2007b) Interannual and interseasonal soil CO2 efflux and VOC exchange rates in a Mediterranean Holm oak forest in response to experimental drought. Soil Biol Biochem 39:2471–2484

    Article  CAS  Google Scholar 

  • Asensio D, Peñuelas J, Ogaya R, Llusia J (2007c) Seasonal soil VOC exchange rates in a Mediterranean Holm oak forest and their responses to drought conditions. Atmos Environ 41:2456–2466

    Article  ADS  CAS  Google Scholar 

  • Asensio D, Owen SM, Llusia J, Peñuelas J (2008a) The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees. Soil Biol Biochem 40:2937–2947

    Article  CAS  Google Scholar 

  • Asensio D, Peñuelas J, Prieto P, Estiarte M, Filella I, Llusià J (2008b) Interannual and seasonal changes in the soil exchange rates of monoterpenes and other VOCs in a Mediterranean shrubland. Eur J Soil Sci 59:878–891

    Article  CAS  Google Scholar 

  • Asensio D, Yuste JC, Mattana S, Ribas À, Llusià J, Peñuelas J (2012) Litter VOCs induce changes in soil microbial biomass C and N and largely increase soil CO2 efflux. Plant Soil 360:163–174

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    Article  ADS  CAS  Google Scholar 

  • Austin AT, Vivanco L, Gonzalez-Arzac A, Perez LI (2014) There’s no place like home? An exploration of the mechanisms behind plant litter- decomposer affinity in terrestrial ecosystems. New Phytol 204:307–314

    Article  Google Scholar 

  • Bachy A, Aubinet M, Amelynck C, Schoon N, Bodson B, Moureaux C, Delaplace P, De Ligne A, Heinesch B (2018) Methanol exchange dynamics between a temperate cropland soil and the atmosphere. Atmos Environ 176:229–239

    Article  ADS  CAS  Google Scholar 

  • Bachy A, Aubinet M, Schoon N, Amelynck C, Bodson B, Moureaux C, Heinesch B (2016) Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season. Atmos Chem Phys 16:5343–5356

    Article  ADS  CAS  Google Scholar 

  • Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from scots pine. Atmos Environ 44:3651–3659

    Article  ADS  Google Scholar 

  • Bourtsoukidis E, Behrendt T, Yañez-Serrano AM, Hellén H, Diamantopoulos E, Catão E, Ashworth K, Pozzer A, Quesada CA, Martins DL, Sá M, Araujo A, Brito J, Artaxo P, Kesselmeier J, Lelieveld J, Williams J (2018) Strong sesquiterpene emissions from amazonian soils. Nat Commun 9:2226

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RW, Bull ID, Journeaux T, Chadwick DR, Jones DL (2021a) Volatile organic compounds (VOCs) allow sensitive differentiation of biological soil quality. Soil Biol Biochem 156:108187

    Article  CAS  Google Scholar 

  • Brown RW, Mayser JP, Widdowson C, Chadwick DR, Jones DL (2021b) Dependence of thermal desorption method for profiling volatile organic compound (VOC) emissions from soil. Soil Biol Biochem 160:108313.

  • Carrión O, Gibson L, Elias DMO, McNamara NP, van Alen TA, Op den Camp HJM, Supramaniam CV, McGenity TJ, Murrell JC (2020) Diversity of isoprene-degrading bacteria in phyllosphere and soil communities from a high isoprene-emitting environment: a Malaysian oil palm plantation. Microbiome 8:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaignaud P, Morawe M, Besaury L, Kröber E, Vuilleumier S, Bringel F, Kolb S (2018) Methanol consumption drives the bacterial chloromethane sink in a forest soil. ISME J 12:2681–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Zhang H, Liu Y, Liu YX, Huang L (2021) EVenn: Easy to create repeatable and editable Venn diagrams and Venn networks online. J Genet Genomics 48:863–866

    Article  PubMed  Google Scholar 

  • Cleveland CC, Yavitt JB (1997) Consumption of atmospheric isoprene in soil. Geophys Res Lett 24:2379–2382

    Article  ADS  CAS  Google Scholar 

  • Cleveland CC, Yavitt JB (1998) Microbial Consumption of Atmospheric Isoprene in a Temperate Forest Soil. Appl Environ Microbiol 64:172–177

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • El Khawand M, Crombie AT, Johnston A, Vavlline DV, McAuliffe JC, Latone JA, Primak YA, Lee SK, Whited GM, McGenity TJ, Murrell JC (2016) Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. Environ Microbiol 18:2743–2753

    Article  PubMed  Google Scholar 

  • English CW, Loehr RC (1991) Degradation of organic vapors in unsaturated soils. J Hazard Mater 28:55–64

    Article  CAS  Google Scholar 

  • Faiola CL, VanderSchelden GS, Wen M, Elloy FC, Cobos DR, Watts RJ, Jobson BT, VanReken TM (2014) SOA formation potential of emissions from Soil and Leaf Litter. Environ Sci Technol 48:938–946

    Article  ADS  CAS  PubMed  Google Scholar 

  • Faubert P, Tiiva P, Rinnan A, Michelsen A, Holopainen JK, Rinnan R (2010) Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. New Phytol 187:199–208

    Article  CAS  PubMed  Google Scholar 

  • Ghirardo A, Lindstein F, Koch K, Buegger F, Schloter M, Albert A, Michelsen A, Winkler JB, Schnitzler J, Rinnan R (2020) Origin of volatile organic compound emissions from subarctic tundra under global warming. Glob Change Biol 26:1908–1925

    Article  ADS  Google Scholar 

  • Goldstein AH, Galbally IE (2007) Known and unexplored Organic constituents in the Earth’s atmosphere. Environ Sci Technol 41:1514–1521

    Article  ADS  CAS  PubMed  Google Scholar 

  • Gray CM, Helmig D, Fierer N (2015) Bacteria and fungi associated with isoprene consumption in soil. Elem Sci Anthr 3:000053

    Article  Google Scholar 

  • Gray CM, Monson RK, Fierer N (2010) Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res Biogeosci 115:2010JG001291

    Article  Google Scholar 

  • Gray CM, Monson RK, Fierer N (2014) Biotic and abiotic controls on biogenic volatile organic compound fluxes from a subalpine forest floor: controls on BVOC fluxes from forest soil. J Geophys Res Biogeosci 119:547–556

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Greenberg JP, Asensio D, Turnipseed A, Guenther AB, Karl T, Gochis D (2012) Contribution of leaf and needle litter to whole ecosystem BVOC fluxes. Atmos Environ 59:302–311

    Article  ADS  CAS  Google Scholar 

  • Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492

    Article  ADS  Google Scholar 

  • Guenther AB, Zimmerman PR, Harley PC, Monson RK, Fall R (1993) Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J Geophys Res 98:12609

    Article  ADS  Google Scholar 

  • Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prevot ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236

    Article  ADS  CAS  Google Scholar 

  • Hamamoto S, Seki K, Miyazaki T (2009) Effect of aggregate structure on VOC gas adsorption onto volcanic ash soil. J Hazard Mater 166:207–212

    Article  CAS  PubMed  Google Scholar 

  • Hellén H, Hakola H, Pystynen KH, Rinne J, Haapanala S (2006) C2-C10 hydrocarbon emissions from a boreal wetland and forest floor. Biogeosciences 3:167–174

    Article  ADS  Google Scholar 

  • Holopainen JK, Heijari J, Oksanen E, Alessio GA (2010) Leaf Volatile emissions of Betula pendula during Autumn Coloration and Leaf fall. J Chem Ecol 36:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Honeker LK, Graves KR, Tfaily MM, Krechmer JE, Meredith LK (2021) The Volatilome: a vital piece of the complete soil metabolome. Front Environ Sci 9:649905

    Article  Google Scholar 

  • Honeker LK, Pugliese G, Ingrisch J, Fudyma J, Gil-Loaiza J, Carpenter E, Singer E, Hildebrand G, Shi L, Hoyt DW, Chu RK, Toyoda J, Krechmer JE, Claflin MS, Ayala-Ortiz C, Freire-Zapata V, Pfannerstill EY, Daber LE, Meeran K, Dippold MA, Kreuzwieser J, Williams J, Ladd SN, Werner C, Tfaily MM, Meredith LK (2023) Drought re-routes soil microbial carbon metabolism towards emission of volatile metabolites in an artificial tropical rainforest. Nat Microbiol 8:1480–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth E, Hoffer A, Sebők F, Dobolyi C, Szoboszlay S, Kriszt B, Gelencsér A (2011) Microscopic fungi as significant sesquiterpene emission sources. J Geophys Res 116:D16301

    Article  ADS  Google Scholar 

  • Horváth E, Hoffer A, Sebők F, Dobolyi C, Szoboszlay S, Kriszt B, Gelencsér A (2012) Experimental evidence for direct sesquiterpene emission from soils. J Geophys Res Atmos 117:2012JD017781

    Article  Google Scholar 

  • Huang X, Zheng L, Guo P, Yi Z (2021) Nitrogen addition inhibits total monoterpene emissions in subtropical forest floor of South China. Soil Ecol Lett 3:63–72

    Article  CAS  Google Scholar 

  • Insam H, Seewald MSA (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • Isidorov V, Povarov V, Stepanov A (1999) Forest soil cover: VOC sink or source?. In: Proc. EUROTRAC Symp, edited by: Borrell PM, and Borrel P, WIT Press, Southampton, 158–162

  • Isidorov VA, Smolewska M, Purzyńska-Pugacewicz A, Tyszkiewicz Z (2010) Chemical composition of volatile and extractive compounds of pine and spruce leaf litter in the initial stages of decomposition. Biogeosciences 7:2785–2794

    Article  ADS  CAS  Google Scholar 

  • Isidorov V, Tyszkiewicz Z, Pirożnikow E (2016) Fungal succession in relation to volatile organic compounds emissions from scots pine and Norway spruce leaf litter-decomposing fungi. Atmos Environ 131:301–306

    Article  ADS  CAS  Google Scholar 

  • Isidorov VA, Zaitsev AA (2022) Reviews and syntheses: VOC emissions from soil cover in boreal and temperate natural ecosystems of the Northern Hemisphere. Biogeosciences 19:4715–4746

    Article  ADS  CAS  Google Scholar 

  • Jacob DJ, Field BD, Jin EM, Bey I, Li Q, Logan JA, Yantosca RM, Singh HB (2002) Atmospheric budget of acetone. J Geophys Res 107:(D10)

  • Jacob DJ, Field BD, Li QB, Blake DR, de Gouw J, Warneke C, Hansel A, Wisthaler A, Singh HB, Guenther A (2005) Global budget of methanol: Constraints from atmospheric observations. J Geophys Res 110: D08303.

  • James KJ, Stack MA (1996) The determination of volatile organic compounds in soils using solid phase microextraction with gas chromatography mass spectrometry. Hrc-J High Resolut Chromatogr 19:515–519

    Article  CAS  Google Scholar 

  • Jiao Y, Kramshøj M, Davie-Martin CL, Albers CN, Rinnan R (2023) Soil uptake of VOCs exceeds production when VOCs are readily available. Soil Biol Biochem 185:109153

    Article  CAS  Google Scholar 

  • Kivimäenpää M, Markkanen JM, Ghimire RP, Holopainen T, Vuorinen M, Holopainen JK (2018) Scots pine provenance affects the emission rate and chemical composition of volatile organic compounds of forest floor. Can J for Res 48:1373–1381

    Article  Google Scholar 

  • Kolb S (2009) Aerobic methanol-oxidizing bacteria in soil. FEMS Microbiol Lett 300:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kramshøj M, Albers CN, Holst T, Holzinger R, Elberling B, Rinnan R (2018) Biogenic volatile release from permafrost thaw is determined by the soil microbial sink. Nat Commun 9:3412

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Kramshøj M, Albers CN, Svendsen SH, Björkman MP, Lindwall F, Björk RG, Rinnan R (2019) Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. Glob Change Biol 25:1704–1716

    Article  ADS  Google Scholar 

  • Kramshøj M, Vedel-Petersen I, Schollert M, Rinnan Å, Nymand J, Ro-Poulsen H, Rinnan R (2016) Large increases in Arctic biogenic volatile emissions are a direct effect of warming. Nat Geosci 9:349–352

    Article  ADS  Google Scholar 

  • Laffineur Q, Aubinet M, Schoon N, Amelynck C, Müller J-F, Dewulf J, Van Langenhove H, Steppe K, Heinesch B (2012) Abiotic and biotic control of methanol exchanges in a temperate mixed forest. Atmos Chem Phys 12:577–590

    Article  ADS  CAS  Google Scholar 

  • Leff JW, Fierer N (2008) Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol Biochem 40:1629–1636

    Article  CAS  Google Scholar 

  • Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:737–740

    Article  ADS  CAS  PubMed  Google Scholar 

  • Lemfack MC, Gohlke BO, Toguem SMT, Preissner S, Piechulla B, Preissner R (2018) mVOC 2.0: a database of microbial volatiles. Nucleic Acids Res 46:D1261–D1265

    Article  CAS  PubMed  Google Scholar 

  • Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Lewinsohn E, Gijzen M, Croteau R (1991) Defense mechanisms of conifers 1: differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol 96:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Cheng Y, Kuhn U, Xu R, Yang Y, Meusel H, Wang Z, Ma N, Wu Y, Li M, Williams J, Hoffmann T, Ammann M, Pöschl U, Shao M, Su H (2019) Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air. Atmos Chem Phys 19:2209–2232

    Article  ADS  CAS  Google Scholar 

  • Li G, Su H, Li X, Kuhn U, Meusel H, Hoffmann T, Ammann M, Pöschl U, Shao M, Cheng Y (2016) Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions. Atmos Chem Phys 16:10299–10311

    Article  ADS  CAS  Google Scholar 

  • Lin C, Owen S, Peñuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960

    Article  CAS  Google Scholar 

  • Llusià J, Asensio D, Sardans J, Filella I, Peguero G, Grau O, Ogaya R, Gargallo-Garriga A, Verryckt LT, Van Langenhove L, Brechet LM, Courtois E, Stahl C, Janssens IA, Peñuelas J (2022) Contrasting nitrogen and phosphorus fertilization effects on soil terpene exchanges in a tropical forest. Sci Total Environ 802:149769

    Article  ADS  PubMed  Google Scholar 

  • Mäki M, Aalto J, Hellén H, Pihlatie M, Bäck J (2019a) Interannual and seasonal dynamics of volatile organic compound fluxes from the boreal forest floor. Front Plant Sci 10:191

    Article  PubMed  PubMed Central  Google Scholar 

  • Mäki M, Aaltonen H, Heinonsalo J, Hellén H, Pumpanen J, Bäck J (2019b) Boreal forest soil is a significant and diverse source of volatile organic compounds. Plant Soil 441:89–110

    Article  Google Scholar 

  • Mäki M, Krasnov D, Hellén H, Noe SM, Bäck J (2019c) Stand type affects fluxes of volatile organic compounds from the forest floor in hemiboreal and boreal climates. Plant Soil 441:363–381

    Article  Google Scholar 

  • Mäki M, Heinonsalo J, Hellén H, Bäck J (2017) Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange. Biogeosciences 14:1055–1073

    Article  ADS  Google Scholar 

  • Mancuso S, Taiti C, Bazihizina N, Costa C, Menesatti P, Giagnoni L, Arenella M, Nannipieri P, Renella G (2015) Soil volatile analysis by Proton transfer reaction-time of flight mass spectrometry (PTR-TOF-MS). Appl Soil Ecol 86:182–191

    Article  Google Scholar 

  • McBride SG, Osburn ED, Barrett JE, Strickland MS (2019) Volatile methanol and acetone additions increase labile soil carbon and inhibit nitrification. Biogeochemistry 145:127–140

    Article  Google Scholar 

  • McBride SG, Osburn ED, Lucas JM, Simpson JS, Brown T, Barrett JE, Strickland MS (2023) Volatile and dissolved Organic Carbon sources have distinct effects on Microbial Activity, Nitrogen Content, and bacterial communities in Soil. Microb Ecol 85:659–668

    Article  ADS  CAS  PubMed  Google Scholar 

  • McGenity TJ, Crombie AT, Murrell JC (2018) Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J 12:931–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith LK, Tfaily MM (2022) Capturing the microbial volatilome: an oft overlooked ome. Trends Microbiol 30:622–631

    Article  CAS  PubMed  Google Scholar 

  • Mielnik A, Link M, Mattila J, Fulgham SR, Farmer DK (2018) Emission of formic and acetic acids from two Colorado soils. Environ Sci Process Impacts 20:1537–1545

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Maggini V, Fani R (2021) Volatile organic compounds: from figurants to leading actors in fungal symbiosis. FEMS Microbiol Ecol 97:fiab067

  • Monard C, Caudal JP, Cluzeau D, Le Garrec JL, Hellequin E, Hoeffner K, Humbert G, Jung V, Le Lann C, Nicolai A (2021) Short-term temporal dynamics of VOC emissions by Soil systems in different biotopes. Front Environ Sci 9:650701

    Article  Google Scholar 

  • Mu ZB, Asensio D, Llusià J, Filella I, Ogaya R, Yi ZG, Peñuelas J (2022) Annual and seasonal variations in soil volatile organic compound concentrations in a Mediterranean shrubland and holm oak forest. Geoderma 405:115401

    Article  ADS  CAS  Google Scholar 

  • Mu ZB, Llusià J, Peñuelas J (2020) Ground Level Isoprenoid Exchanges Associated with Pinus pinea trees in a Mediterranean Turf. Atmosphere 11:809

    Article  ADS  CAS  Google Scholar 

  • Mu ZB, Zeng JQ, Zhang YL, Song W, Pang WH, Yi ZG, Asensio D, Llusià J, Peñuelas J, Wang XM (2023) Soil uptake of isoprenoids in a Eucalyptus urophylla plantation forest in subtropical China. Front for Glob Change 6:1260327

    Article  Google Scholar 

  • Murrell JC, McGenity TJ, Crombie AT (2020) Microbial metabolism of isoprene: a much-neglected climate-active gas. Microbiology 166:600–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TB, Crounse JD, Teng AP, St Clair JM, Paulot F, Wolfe GM, Wennberg PO (2015) Rapid deposition of oxidized biogenic compounds to a temperate forest. PNAS 112:E392-401

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. Fems Microbiol Lett 268:34–39

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Goldstein AH, Timkovsky J, Fares S, Weber R, Karlik J, Holzinger R (2013) Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds. Science 341:643–647

    Article  ADS  CAS  PubMed  Google Scholar 

  • Paulot F, Wunch D, Crounse JD, Toon GC, Millet DB, DeCarlo PF, Vigouroux C, Deutscher NM, González Abad G, Notholt J, Warneke T, Hannigan JW, Warneke C, De Gouw JA, Dunlea EJ, De Mazière M, Griffith DWT, Bernath P, Jimenez JL, Wennberg PO (2011) Importance of secondary sources in the atmospheric budgets of formic and acetic acids. Atmos Chem Phys 11:1989–2013

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegoraro E, Abrell L, Van Haren J (2005) The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Glob Chang Biol 11:1234–1246

    Article  ADS  Google Scholar 

  • Pegoraro E, Rey ANA, Abrell L, Van Haren J, Lin G (2006) Drought effect on isoprene production and consumption in Biosphere 2 tropical rainforest. Glob Chang Biol 12:456–469

    Article  ADS  Google Scholar 

  • Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP (2014) Biogenic volatile emissions from the soil. Plant Cell Environ 37:1866–1891

    Article  PubMed  Google Scholar 

  • Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144

    Article  PubMed  Google Scholar 

  • Petersen LW, Rolston DE, Moldrup P, Yamaguchi T (1994) Volatile organic vapor diffusion and adsorption in soils. J Environ Qual 23:799–805

    Article  CAS  Google Scholar 

  • Pugliese G, Ingrisch J, Meredith LK, Pfannerstill EY, Klüpfel T, Meeran K, Byron J, Purser G, Gil-Loaiza J, van Haren J, Dontsova K, Kreuzwieser J, Ladd SN, Werner C, Williams J (2023) Effects of drought and recovery on soil volatile organic compound fluxes in an experimental rainforest. Nat Commun 14:5064

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez KS, Lauber CL, Fierer N (2010) Microbial consumption and production of volatile organic compounds at the soil-litter interface. Biogeochemistry 99:97–107

    Article  CAS  Google Scholar 

  • Raza W, Mei X, Wei Z, Ling N, Yuan J, Wang J, Huang Q, Shen Q (2017) Profiling of soil volatile organic compounds after long-term application of inorganic, organic and organic-inorganic mixed fertilizers and their effect on plant growth. Sci Total Environ 607–608:326–338

    Article  ADS  PubMed  Google Scholar 

  • Rezaie N, Pallozzi E, Ciccioli P, Calfapietra C, Fares S (2023) Temperature dependence of emission of volatile organic compounds (VOC) from litters collected in two Mediterranean ecosystems determined before the flaming phase of biomass burning. Environ Pollut 338:122703

    Article  CAS  PubMed  Google Scholar 

  • Rinnan R, Albers CN (2020) Soil uptake of volatile Organic compounds: ubiquitous and underestimated? J Geophys Res Biogeosciences 125:e2020JG005773

    Article  ADS  CAS  Google Scholar 

  • Rinnan R, Gierth D, Bilde M, Rosenørn T, Michelsen A (2013) Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting. Front Microbiol 4:224

  • Rossabi S, Choudoir M, Helmig D, Hueber J, Fierer N (2018) Volatile Organic Compound Emissions From Soil Following Wetting Events. J Geophys Res: Biogeoscinces 123:1988–2001

  • Romero-Olivares AL, Davie-Martin CL, Kramshøj M, Rinnan R, Frey SD (2022) Soil volatile organic compound emissions in response to soil warming and nitrogen deposition. Elem Sci Anthr 10:00065

    Article  Google Scholar 

  • Ruiz J, Bilbao R, Murillo MB (1998) Adsorption of different VOC onto Soil minerals from Gas Phase: influence of Mineral, type of VOC, and Air Humidity. Environ Sci Technol 32:1079–1084

    Article  ADS  CAS  Google Scholar 

  • Schade GW, Goldstein AH (2001) Fluxes of oxygenated volatile organic compounds from a ponderosa pine plantation. J Geophys Res Atmospheres 106:3111–3123

    Article  CAS  Google Scholar 

  • Schenkel D, Lemfack MC, Piechulla B, Splivallo R (2015) A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci 6:707

    Article  PubMed  PubMed Central  Google Scholar 

  • Scholler CEG, Gurtler H, Pedersen R, Molin S, Wilkins K (2002) Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621

    Article  PubMed  Google Scholar 

  • Shrestha P, Meisterjahn B, Klein M, Mayer P, Birch H, Hughes CB, Hennecke D (2019) Biodegradation of Volatile Chemicals in Soil: separating volatilization and degradation in an Improved Test Setup (OECD 307). Environ Sci Technol 53:20–28

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, Stavrakou T, Müller JF, Kuhn U, Stefani P, Knorr W (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos Chem Phys 14:9317–9341

    Article  ADS  Google Scholar 

  • Smolander A, Ketola RA, Kotiaho T, Kanerva S, Suominen K, Kitunen V (2006) Volatile monoterpenes in soil atmosphere under birch and conifers: effects on soil N transformations. Soil Biol Biochem 38:3436–3442

    Article  CAS  Google Scholar 

  • Šoštarić A, Stanišić Stojić S, Vuković G, Mijić Z, Stojić A, Gržetić I (2017) Rainwater capacities for BTEX scavenging from ambient air. Atmos Environ 168:46–54

    Article  ADS  Google Scholar 

  • Spielmann FM, Langebner S, Ghirardo A, Hansel A, Schnitzler J-P, Wohlfahrt G (2017) Isoprene and α-pinene deposition to grassland mesocosms. Plant Soil 410:313–322

    Article  CAS  Google Scholar 

  • Stacheter A, Noll M, Lee CK, Selzer M, Glowik B, Ebertsch L, Mertel R, Schulz D, Lampert N, Drake HL, Kolb S (2013) Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs. ISME J 7:1051–1064

    Article  CAS  PubMed  Google Scholar 

  • Staudt M, Byron J, Piquemal K, Williams J (2019) Compartment specific chiral pinene emissions identified in a Maritime pine forest. Sci Total Environ 654:1158–1166

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stavrakou T, Guenther A, Razavi A, Clarisse L, Clerbaux C, Coheur PF, Hurtmans D, Karagulian F, De Mazière M, Vigouroux C, Amelynck C, Schoon N, Laffineur Q, Heinesch B, Aubinet M, Rinsland C, Müller JF (2011) First space-based derivation of the global atmospheric methanol emission fluxes. Atmos Chem Phys 11:4873–4898

    Article  ADS  CAS  Google Scholar 

  • Stojić A, Stanić N, Vuković G, Stanišić S, Perišić M, Šoštarić A, Lazić L (2019) Explainable extreme gradient boosting tree-based prediction of toluene, ethylbenzene and xylene wet deposition. Sci Total Environ 653:140–147

    Article  ADS  PubMed  Google Scholar 

  • Svendsen SH, Priemé A, Voriskova J, Kramshøj M, Schostag M, Jacobsen CS, Rinnan R (2018) Emissions of biogenic volatile organic compounds from arctic shrub litter are coupled with changes in the bacterial community composition. Soil Biol Biochem 120:80–90

    Article  CAS  Google Scholar 

  • Tang J, Schurgers G, Rinnan R (2019) Process understanding of Soil BVOC fluxes in Natural ecosystems: a review. Rev Geophys 57:966–986

    Article  ADS  Google Scholar 

  • Tang J, Valolahti H, Kivimäenpää M, Michelsen A, Rinnan R (2018) Acclimation of Biogenic Volatile Organic compound Emission from Subarctic Heath under long-term moderate warming. J Geophys Res Biogeosci 123:95–105

    Article  CAS  Google Scholar 

  • Trowbridge AM, Stoy PC, Phillips RP (2020) Soil Biogenic Volatile Organic Compound Flux in a Mixed Hardwood Forest: Net Uptake at Warmer Temperatures and the Importance of Mycorrhizal Associations. JGR Biogeosci 125:e2019JG005479. https://doi.org/10.1029/2019JG005479

  • Tsuruta J, Okumura M, Makita N, Kosugi Y, Miyama T, Kume T, Tohno S (2018) A comparison of the biogenic volatile organic compound emissions from the fine roots of 15 tree species in Japan and Taiwan. J for Res 23:242–251

    Article  CAS  Google Scholar 

  • Tunved P, Hansson HC, Kerminen VM (2006) High natural aerosol loading over boreal forests. Science 312:261–263

    Article  ADS  CAS  PubMed  Google Scholar 

  • Van Roon A, Parsons JR, Krap L, Govers HA (2005) Fate and transport of monoterpenes through soils. Part II: calculation of the effect of soil temperature, water saturation and organic carbon content. Chemosphere 61:129–138

    Article  ADS  PubMed  Google Scholar 

  • Veres PR, Behrendt T, Klapthor A, Meixner FX, Williams J (2014) Volatile Organic compound emissions from soil: using Proton-transfer-reaction time-of-flight Mass Spectrometry (PTR-TOF-MS) for the real time observation of microbial processes. Biogeosci Discuss 11:12009–12038

    ADS  Google Scholar 

  • Viros J, Fernandez C, Wortham H, Lecareux C, Ormeño E (2020) Litter of mediterranean species as a source of volatile organic compounds. Atmos Environ 242:117815

    Article  Google Scholar 

  • Viros J, Santonja M, Temime-Roussel B, Wortham H, Fernandez C, Ormeño E (2021) Volatilome of Aleppo Pine litter over decomposition process. Ecol Evol 11:6862–6880

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Schurgers G, Hellen H, Lagergren F, Holst T (2018) Biogenic volatile organic compound emissions from a boreal forest floor. Boreal Environ Res 23:249–265

    CAS  Google Scholar 

  • Warneke C, Karl T, Judmaier H, Hansel A, Jordan A, Lindinger W, Crutzen PJ (1999) Acetone, methanol, and other partially oxidized volatile organic emissions from dead plant matter by abiological processes: significance for atmospheric HOxchemistry. Glob Biogeochem Cycles 13:9–17

    Article  ADS  CAS  Google Scholar 

  • Weikl F, Ghirardo A., Schnitzler JP, Pritsch K (2016) Sesquiterpene emissions from Alternaria alternata and Fusarium oxysporum: Effects of age, nutrient availability, and co-cultivation. Sci Rep 6:22152. https://doi.org/10.1038/srep22152

  • Wester-Larsen L, Kramshøj M, Albers CN, Rinnan R (2020) Biogenic volatile Organic compounds in Arctic Soil: a field study of concentrations and variability with Vegetation Cover. J Geophys Res Biogeosci 125:e2019JG005551

    Article  ADS  CAS  Google Scholar 

  • Williams J (2004) Organic Trace gases in the atmosphere: an overview. Environ Chem 1:125–136

    Article  CAS  Google Scholar 

  • Yang K, Llusià J, Preece C, Ogaya R, Márquez Tur L, Mu ZB, You CM, Xu ZF, Tan Y, Peñuelas J (2024) Impacts of seasonality, drought, nitrogen fertilization, and litter on soil fluxes of biogenic volatile organic compounds in a Mediterranean forest. Sci Total Environ 906:167354

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yi Z, Wang X, Ouyang M, Zhang D, Zhou G (2010) Air-soil exchange of dimethyl sulfide, carbon disulfide, and dimethyl disulfide in three subtropical forests in south China. J Geophys Res 115:D18302

    ADS  Google Scholar 

  • Zhang LL, Yin L, Zheng LL, Huang XR, Yi ZG (2017) Effect of simulated nitrogen deposition on alkane and alkene fluxed from forest floor at Dinghuashan. Chin J Ecol 36:3462–3469

    Google Scholar 

  • Zhang-Turpeinen H, Kivimäenpää M, Aaltonen H, Berninger F, Köster E, Köster K, Menyailo O, Prokushkin A, Pumpanen J (2020) Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Sci Total Environ 711:134851

    Article  ADS  CAS  PubMed  Google Scholar 

  • Zheng LL, Guo PP, Yi ZG (2015) Responses of Soil BTEX fluxes to Simulated Nitrogen Deposition in two dominated forests of Dinghushan, China. Ecol Environ Sci 24:396–401

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Catalan government grant SGR221-1333, the TED2021-132627B-I00 grant funded by the Spanish MCIN, AEI/https://doi.org/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, and the Fundación Ramón Areces project CIVP20A6621. Kaijun Yang is grateful for the financial support from the China Scholarship Council (201806910060). The datasets generated during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijun Yang.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts of interest relevant to this work.

Additional information

Responsible Editor: Wolfgang Wilcke.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35.0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Llusià, J., Preece, C. et al. Exchange of volatile organic compounds between the atmosphere and the soil. Plant Soil (2024). https://doi.org/10.1007/s11104-024-06524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-024-06524-x

Keywords

Navigation