Skip to main content
Log in

The conversion of mycorrhizal types closely associated with the changes in microbial keystone taxa and potential function in subtropical forests

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Mycorrhizal fungi and microbial community play crucial roles in soil carbon (C) cycling within forest ecosystems. The various types of mycorrhizal fungi have distinct effects on the decomposition of soil organic C, primarily through their interactions with microbial members. However, there is currently a lack of understanding regarding the linkages between mycorrhizal types and microbial properties such as microbial keystone taxa and functions.

Methods

In this study, we investigated the impact of converting ECM-dominated forests to AM-dominated forests on bacterial and fungal community composition, keystone taxa and potential functions by high -throughput sequencing.

Results

The ECM fungal biomass in broadleaved forest soils showed a decrease of 45.07% compared to Masson pine forest soils. In contrast, the AM fungal biomass increased significantly by 25.57%. Our results demonstrated that the conversion from ECM- to AM-dominated forests enhanced soil organic carbon (SOC), total nitrogen (TN) and fungal diversity. There was no significant change in the microbial composition at the phylum level. Moreover, the conversion significantly altered the properties of microbial co-occurrence networks and the potential function of bacteria and fungi. Correlation analysis revealed close relationships between the relative abundance of microbial keystone taxa and microbial carbon degradation genes, as well as the biomass of mycorrhizal fungi.

Conclusions

Our study suggested that the conversion of ECM- to AM-dominated forests altered microbial interaction, keystone taxa and function, which were significantly associated with changes in mycorrhizal fungal biomass and drove the increase in SOC content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, Schaub M, Rautio P, Ferretti M, Vesterdal L, De Vos B, Dettwiler M, Eickenscheidt N, Schmitz A, Meesenburg H, Andreae H, Jacob F, Dietrich HP, Waldner P et al (2022) Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J 16:1327–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus-mosseae inoculation or plant species. Environ Microbiol 7:1952–1966

    CAS  PubMed  Google Scholar 

  • Averill C, Barry BK, Hawkes C (2015) Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale. AGU Fall Meeting Abstracts

  • Averill C, Hawkes CV, Bardgett R (2016) Ectomycorrhizal fungi slow soil carbon cycling. Ecol Lett 19:937–947

    PubMed  Google Scholar 

  • Bååth E, Nilsson LO, Göransson H, Wallander H (2004) Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil? Soil Biol Biochem 36:2105–2109

    Google Scholar 

  • Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198

    CAS  Google Scholar 

  • Banerjee S, Walder F, Buchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J 13:1722–1736

    PubMed  PubMed Central  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2011) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    PubMed  PubMed Central  Google Scholar 

  • Barceló M, Bodegom PM, Tedersoo L, Olsson PA, Soudzilovskaia NA (2022) Mycorrhizal tree impacts on topsoil biogeochemical properties in tropical forests. J Ecol 110:1271–1282

    Google Scholar 

  • Bardgett R, Freeman C, Ostle N (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805–814

    CAS  PubMed  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings feedbacks and the climate benefits of forests. Science 320(5882):1444–1449

    CAS  PubMed  Google Scholar 

  • Brabcová V, Nováková M, Davidová A, Baldrian P (2016) Dead fungal mycelium in forest soil represents a decomposition hotspot and a habitat for a specific microbial community. New Phytol 210:1369–1381

    PubMed  Google Scholar 

  • Brzostek ER, Dragoni D, Brown ZA, Phillips RP (2015) Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol 206:1274–1282

    CAS  PubMed  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    CAS  Google Scholar 

  • Cai X, Lin Z, Penttinen P, Li Y, Li Y, Luo Y, Yue T, Jiang P, Fu W (2018) Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. Forest Ecol Manag 422:161–171

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castaño C, Dejene T, Mediavilla O, Geml J, Oria-de-Rueda JA, Martín-Pinto P (2019) Changes in fungal diversity and composition along a chronosequence of Eucalyptus grandis plantations in Ethiopia. Fungal Ecol 39:328–335

    Google Scholar 

  • Chen L, Jiang Y, Liang C, Luo Y, Xu Q, Han C, Zhao Q, Sun B (2019) Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7:77

    PubMed  PubMed Central  Google Scholar 

  • Chen J, Elsgaard L, van Groenigen KJ, Olesen JE, Liang Z, Jiang Y, Lærke PE, Zhang Y, Luo Y, Hungate BA, Sinsabaugh RL, Jørgensen U (2020) Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Global Change Biology 26: 1944-1952.

  • Clemmensen KE, Durling MB, Michelsen A, Hallin S, Finlay RD, Lindahl BD (2021) A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol Lett 24:1193–1204

    PubMed  Google Scholar 

  • Dijkstra P, Thomas SC, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011) Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol Biochem 43:2023–2031

    CAS  Google Scholar 

  • Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global Forest ecosystems. Science 263(5144):185–190

    CAS  PubMed  Google Scholar 

  • Dong HY, Ge JF, Sun K, Wang BZ, Xue JM, Wakelin SA, Wu JS, Sheng WX, Liang CF, Xu QF, Jiang PK, Chen JH, Qin H (2021) Change in root-associated fungal communities affects soil enzymatic activities during Pinus massoniana forest development in subtropical China. Forest Ecol Manag 482:118817

    Google Scholar 

  • Dopson M, Johnson DB (2012) Biodiversity metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631

    CAS  PubMed  Google Scholar 

  • Douglas G, Maffei V, Zaneveld J, Yurgel S, Brown J, Taylor C, Huttenhower C, Langille M (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:1–5

    Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HT, Bodelier PL, Whiteley AS, van Veen JA, Kowalchuk GA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. P Natl Acad Sci USA 107:10938–10942

    CAS  Google Scholar 

  • Eagar AC, Mushinski RM, Horning AL, Smemo KA, Phillips RP, Blackwood CB (2022) Arbuscular mycorrhizal tree communities have greater soil fungal diversity and relative abundances of saprotrophs and pathogens than ectomycorrhizal tree communities. Appl Environ Microbiol 88:e0178221

    PubMed  Google Scholar 

  • Emmett BD, Lévesque-Tremblay V, Harrison MJ (2021) Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J 15:2276–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan K, Weisenhorn P, Gilbert JA, Chu H (2018) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260

    CAS  Google Scholar 

  • Fang M, Liang M, Liu X, Li W, Huang E, Yu S (2020) Abundance of saprotrophic fungi determines decomposition rates of leaf litter from arbuscular mycorrhizal and ectomycorrhizal trees in a subtropical forest. Soil Biol Biochem 149:107966

    CAS  Google Scholar 

  • Feng J, Wang C, Lei J, Yang Y, Yan Q, Zhou X, Tao X, Ning D, Yuan MM, Qin Y, Shi ZJ, Guo X, He Z, Van Nostrand JD, Wu L, Bracho-Garillo RG, Penton CR, Cole JR, Konstantinidis KT et al (2020) Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez CW, Langley JA, Chapman S, McCormack ML, Koide RT (2016) The decomposition of ectomycorrhizal fungal necromass. Soil Biol Biochem 93:38–49

    CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods 14:151–163

    Google Scholar 

  • Fu X, Song Q, Li S, Shen Y, Yue S (2022) Dynamic changes in bacterial community structure are associated with distinct priming effect patterns. Soil Biol Biochem 169:108671

    CAS  Google Scholar 

  • Guo X, Gao Q, Yuan M, Wang G, Zhou X, Feng J, Shi Z, Hale L, Wu L, Zhou A, Tian R, Liu F, Wu B, Chen L, Jung CG, Niu S, Li D, Xu X, Jiang L et al (2020) Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat Commun 11:4897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagenbo A, Hadden D, Clemmensen KE, Grelle A, Manzoni S, Mölder M, Ekblad A, Fransson P, Vries F (2019) Carbon use efficiency of mycorrhizal fungal mycelium increases during the growing season but decreases with forest age across a Pinus sylvestris chronosequence. J Ecol 107:2808–2822

    CAS  Google Scholar 

  • Heděnec P, Zheng H, Pessanha Siqueira D, Lin Q, Peng Y, Kappel Schmidt I, Guldberg Frøslev T, Kjøller R, Rousk J, Vesterdal L (2023) Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties. Forest Ecol Manag 527:120608

    Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD (2016) Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest. New Phytol 209:1693–1704

    CAS  PubMed  Google Scholar 

  • Huang J, Nara K, Lian C, Zong K, Peng K, Xue S, Shen Z (2012) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb-Zn mine sites of central South China. Mycorrhiza 22:589–602

    PubMed  Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? Front Plant Sci 4:134

  • Jin W, Ge J, Shao S, Peng L, Xing J, Liang C, Chen J, Xu Q, Qin H (2022a) Intensive management enhances mycorrhizal respiration but decreases free-living microbial respiration through its effect on microbial abundance and community in Moso bamboo forests. Pedosphere 32 (2023)

  • Jin J, Krohn C, Franks AE, Wang X, Wood JL, Petrovski S, McCaskill M, Batinovic S, Xie Z, Tang C (2022b) Elevated atmospheric CO2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat. Microbiome 10:12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin W, Tu J, Wu Q, Peng L, Xing J, Liang C, Shao S, Chen J, Xu Q, Qin H (2023) Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest. For Ecosyst 10:100116

    Google Scholar 

  • Jing H, Li J, Yan B, Wei F, Wang G, Liu G (2021) The effects of nitrogen addition on soil organic carbon decomposition and microbial C-degradation functional genes abundance in a Pinus tabulaeformis forest. Forest Ecol Manag 489:119098

    Google Scholar 

  • Justine M, Yang W, Wu F, Tan B, Khan M, Zhao Y (2015) Biomass stock and carbon sequestration in a Chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6:3665–3682

    Google Scholar 

  • Karhu K, Alaei S, Li J, Merilä P, Ostonen I, Bengtson P (2022) Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios. Soil Biol Biochem 167:108615

    CAS  Google Scholar 

  • Kjoller R, Nilsson LO, Hansen K, Schmidt IK, Vesterdal L, Gundersen P (2012) Dramatic changes in ectomycorrhizal community composition root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol 194:278–286

    CAS  PubMed  Google Scholar 

  • Kyaschenko J, Clemmensen KE, Hagenbo A, Karltun E, Lindahl BD (2017) Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands. ISME J 11:863–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li JW, Shangguan ZP, Deng L (2020) Variations of belowground C and N cycling between arbuscular mycorrhizal and ectomycorrhizal forests across China. Soil Res 58:441–451

    CAS  Google Scholar 

  • Lin G, McCormack ML, Ma C, Guo D (2017) Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol 213:1440–1451

    CAS  PubMed  Google Scholar 

  • Lindahl BD, Kyaschenko J, Varenius K, Clemmensen KE, Dahlberg A, Karltun E, Stendahl J (2021) A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol Lett 24:1341–1351

    PubMed  Google Scholar 

  • Liu K, Cai M, Hu C, Sun X, Cheng Q, Jia W, Yang T, Nie M, Zhao X (2019) Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles. Environ Pollut 254:113051

    CAS  PubMed  Google Scholar 

  • Liu C, Zhou Y, Qin H, Liang C, Shao S, Fuhrmann JJ, Chen J, Xu Q (2021) Moso bamboo invasion has contrasting effects on soil bacterial and fungal abundances co-occurrence networks and their associations with enzyme activities in three broadleaved forests across subtropical China. Forest Ecol Manag 498:119549

    Google Scholar 

  • Lu R (2000) Analytical methods for soils and agricultural chemistry. China Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Luo Y, Yang Y, Wang N, Guo X, Zhang Y, Ye B (2017) Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. Plos One 12(5):e0178425.

  • Mei L, Zhang P, Cui G, Yang X, Zhang T, Guo J (2022) Arbuscular mycorrhizal fungi promote litter decomposition and alleviate nutrient limitations of soil microbes under warming and nitrogen application. Appl Soil Ecol 171:104318

    Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174

    Google Scholar 

  • Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, Nagata Y, Fujiyama A, Tsuda M, Kurokawa K (2013) Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 21:217–227

    PubMed  PubMed Central  Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Google Scholar 

  • Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310

    CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    CAS  PubMed  Google Scholar 

  • Phillips LA, Ward V, Jones MD (2013a) Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J 8:699–713

    PubMed  PubMed Central  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013b) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199:41–51

    CAS  PubMed  Google Scholar 

  • Qin H, Chen J, Wu Q, Niu L, Li Y, Liang C, Shen Y, Xu Q (2017) Intensive management decreases soil aggregation and changes the abundance and community compositions of arbuscular mycorrhizal fungi in Moso bamboo (Phyllostachys pubescens) forests. For Ecol Manag 400:246–255

    Google Scholar 

  • Qin Y, Zhang W, Feng Z, Feng G, Zhu H, Yao Q (2022) Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl Soil Ecol 170:104294

    Google Scholar 

  • Schimel JP, Schaeffer SM (2012) Microbial control over carbon cycling in soil. Front Microbiol 3:348

    CAS  PubMed  PubMed Central  Google Scholar 

  • See CR, Keller AB, Hobbie SE, Kennedy PG, Weber PK, Pett-Ridge J (2022) Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob Chang Biol 28:2527–2540

    CAS  PubMed  Google Scholar 

  • Soudzilovskaia NA, Heijden MGA, Cornelissen JHC, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzhanova AA, Bodegom PM (2015) Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol 208:280–293

    CAS  PubMed  Google Scholar 

  • Soudzilovskaia NA, van Bodegom PM, Terrer C, Zelfde MV, McCallum I, Luke McCormack M, Fisher JB, Brundrett MC, de Sa NC, Tedersoo L (2019) Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun 10:5077

    PubMed  PubMed Central  Google Scholar 

  • Tiruvaimozhi YV, Sankaran M (2019) Soil respiration in a tropical montane grassland ecosystem is largely heterotroph-driven and increases under simulated warming. Agric For Meteorol 276-277:107619

    Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, Zhou J, Singh BK (2016) Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J 10:2593–2604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truu M, Nolvak H, Ostonen I, Oopkaup K, Maddison M, Ligi T, Espenberg M, Uri V, Mander U, Truu J (2020) Soil bacterial and archaeal communities and their potential to perform N-cycling processes in soils of boreal forests growing on well-drained peat. Front Microbiol 11:591358

    PubMed  PubMed Central  Google Scholar 

  • Ujvári G, Turrini A, Avio L, Agnolucci M (2021) Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza 31:527–544

    PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past the present and the future. New Phytol 205:1406–1423

    PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal rna genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    CAS  PubMed  Google Scholar 

  • World Reference Base for Soil Resources (2006). A Framework for International Classification, Correlation and Communication. FAO, Rome.

  • Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Google Scholar 

  • Yu H, Liu X, Yang C, Peng Y, Yu X, Gu H, Zheng X, Wang C, Xiao F, Shu L, He Z, Wu B, Yan Q (2021) Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems. Soil Biol Biochem 161:108382

    CAS  Google Scholar 

  • Zhang LF, Huang YY, Liu LP, Fu SL (2013) Influences of species mixture on biomass of Masson pine (Pinus massoniana Lamb) forests. Genet Mol Res 12:3742–3749

    CAS  PubMed  Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhou J, George TS, Limpens E, Feng G (2021) Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra. Trends Plant Sci 27:402–411

    PubMed  Google Scholar 

  • Zhang S, Fang Y, Kawasaki A, Tavakkoli E, Cai Y, Wang H, Ge T, Zhou J, Yu B, Li Y (2023) Biochar significantly reduced nutrient-induced positive priming in a subtropical forest soil. Biol Fertil Soils 59:589–607

    CAS  Google Scholar 

  • Zhao F, Wang J, Li Y, Xu X, He L, Wang J, Ren C, Guo Y (2022) Microbial functional genes driving the positive priming effect in forest soils along an elevation gradient. Soil Biol Biochem 165:108498

    CAS  Google Scholar 

  • Zheng H, Heděnec P, Rousk J, Schmidt IK, Peng Y, Vesterdal L (2022) Effects of common European tree species on soil microbial resource limitation microbial communities and soil carbon. Soil Biol Biochem 172:108754

    CAS  Google Scholar 

  • Zhong F, Fan X, Ji W, Hai Z, Hu N, Li X, Liu G, Yu C, Chen Y, Lian B, Wei H, Zhang J (2022) Soil fungal community composition and diversity of culturable endophytic Fungi from plant roots in the reclaimed area of the eastern coast of China. J Fungi (Basel) 8:124

    CAS  PubMed  Google Scholar 

  • Zhou J, Gube M, Holz M, Song B, Shan I, Shi L, Kuzyakov Y, Dippold MA, Pausch J (2022a) Ectomycorrhizal and non-mycorrhizal rhizosphere fungi increase root-derived C input to soil and modify enzyme activities: a 14C pulse labelling of Picea abies seedlings. Plant Cell Environ 45:3122–3133

  • Zhou J, Zhang L, Feng G, George TS (2022b) Arbuscular mycorrhizal fungi have a greater role than root hairs of maize for priming the rhizosphere microbial community and enhancing rhizosphere organic P mineralization. Soil Biol Biochem 171:108713

    CAS  Google Scholar 

  • Zhu Z, Fang Y, Liang Y, Li Y, Liu S, Li Y, Li B, Gao W, Yuan H, Kuzyakov Y, Wu J, Richter A, Ge T (2022) Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biol Biochem 169:108669

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. 31971631, 32271850, 32001170), Natural Science Foundation of Zhejiang Province under grant number LZ22C160001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Qin.

Ethics declarations

Consent for publication

All authors have read and approved the paper, and it has not been published previously nor is it being considered by any other peer-reviewed journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Isabel Mujica.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Mycorrhizal conversion increased SOC, TN, fungal diversity but decreased bacterial diversity.

Mycorrhizal conversion changed interactions of microbial members and microbial functions.

Mycorrhizal fungal biomass associated with the microbial keystone taxa and functions.

Supplementary Information

ESM 1

(DOCX 599 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Tu, J., Sheng, W. et al. The conversion of mycorrhizal types closely associated with the changes in microbial keystone taxa and potential function in subtropical forests. Plant Soil 498, 599–615 (2024). https://doi.org/10.1007/s11104-023-06458-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06458-w

Keywords

Navigation