Skip to main content

Advertisement

Log in

Combining agroecology and bioeconomy to meet the societal challenges of agriculture

  • Lambers Opinion Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

One of the major challenges of modern agriculture is to transform agricultural systems to support food security under global change. The reduction of the agricultural carbon footprint requires the development of agroecological practices and eco-friendly processes for biomass and by-products transformation. The push towards decarbonization of several industrial sector brings about new demand for bio-based products and can constitute an opportunity for crop diversification and by-products valorisation for crop fertilization and protection. This evolution leads to the study of novel agricultural systems centered around the concept of circular bioeconomy and the development of transdisciplinary approaches combining agroecology and bioeconomy to create more resilient. But what are these approaches and which steps must be taken to transform agricultural systems toward the ultimate goal of sustainability?

Methods

This opinion paper synthesizes such recent advances and contemporary understanding of agroecology and bioeconomy synergies by focusing on 1) the agroecological solutions for the bioeconomy: the ecological role of crop diversification, 2) the main eco-technologies of waste recycling and biomass transformation for agroecological development, 3) a holistic approach of combinations of agroecology and bioeconomy for sustainable agricultural systems.

Results

This combination is based on the association of functional low- and high-tech innovations that require life cycle analysis and a multi-assessment in cropping and farming systems to decrease their energy consumption and greenhouse gas emissions.

Conclusion

The combination of agroecology and circular bioeconomy constitutes an important lever to mobilize in order to improve ecosystem services at the soil–plant-atmosphere interface and farming sustainability at the territorial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achilleos P, Roberts KR, Williams ID (2022) Struvite precipitation within wastewater treatment: a problem or a circular economy opportunity? Heliyon 8:e09862

    PubMed  PubMed Central  CAS  Google Scholar 

  • Adejumo IO, Adebiyi OA (2020) Agricultural Solid Wastes: Causes, Effects, and Effective Management. In: Saleh HM (ed) Strategies of Sustainable Solid Waste Management. IntechOpen, Rijeka, p Ch. 10

  • Alewell C, Ringeval B, Ballabio C, Robinson DA, Panagos P, Borrelli P (2020) Global phosphorus shortage will be aggravated by soil erosion. Nat Commun 11:4546

    PubMed  PubMed Central  CAS  Google Scholar 

  • Alletto L, Vandewalle A, Debaeke P (2022) Crop diversification improves cropping system sustainability: an 8-year on-farm experiment in South-Western France. Agric Syst 200:103433

    Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press. Part Three Dev. Clim. Rights, Boulder, 238:12052-12057

  • Areeshi MY (2022) Recent advances on organic biofertilizer production from anaerobic fermentation of food waste: overview. Int J Food Microbiol 374:109719. https://doi.org/10.1016/j.ijfoodmicro.2022.109719

    Article  PubMed  CAS  Google Scholar 

  • Asseng S, Martre P, Maiorano A, Rötter RP, O’Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP (2019) Climate change impact and adaptation for wheat protein. Glob Chang Biol 25:155–173

    PubMed  Google Scholar 

  • Aussenac T (2022) Ozone in Agriculture and Food Processing - Ozone Days 2022, March 23 and 24, Beauvais, France

  • Bailly C (2019) The signalling role of ROS in the regulation of seed germination and dormancy. Biochem 476:3019–3032

    CAS  Google Scholar 

  • Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, Jensen ES, Prieur L, Justes E (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35:911–935

    Google Scholar 

  • Bennetzen EH, Smith P, Porter JR (2016) Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Glob Environ Chang 37:43–55

    Google Scholar 

  • Benoît M, Rizzo D, Marraccini E, Moonen AC, Galli M, Lardon S, Rapey H, Thenail C, Bonari E (2012) Landscape agronomy: a new field for addressing agricultural landscape dynamics. Landsc Ecol 27:1385–1394

    Google Scholar 

  • Berthe A, Grouiez P, Fautras M (2022) Heterogeneity of agricultural biogas plants in France: a sectoral system of innovation perspective. J Innov Econ Manag 38(11):34

    Google Scholar 

  • Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, Karakoti A, Joseph S, Jung S, Kim KH, Kirkham MB, Kua HW (2022) Multifunctional applications of biochar beyond carbon storage. Int Mater Rev 67:150–200

    CAS  Google Scholar 

  • Bremner JM, McCarty GW (2021) Inhibition of nitrification in soil by allelochemicals derived from plants and plant residues. Soil Biochemistry, pp 181–218

    Google Scholar 

  • Brodowska A, Nowak A, Smigielski K (2018) Ozone in the food industry: principles of ozone treatment, mechanisms of action, and applications: an overview. Crit Rev Food Sci Nutr 58:2176–2201

    PubMed  CAS  Google Scholar 

  • Caradonia F, Battaglia V, Righi L, Pascali G, La Torre A (2019) Plant biostimulant regulatory framework: prospects in Europe and current situation at international level. J Plant Growth Regul 38:438–448

    CAS  Google Scholar 

  • Carraresi L, Bröring S (2021) How does business model redesign foster resilience in emerging circular value chains? J Clean Prod 289:125823

    Google Scholar 

  • Chiocchio I, Mandrone M, Tomasi P et al (2021) Plant secondary metabolites: an opportunity for circular economy. Molecules 26:495

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, Van Der Werf W (2015) Intercropping enhances soil carbon and nitrogen. Glob Chang Biol 21:1715–1726

    PubMed  Google Scholar 

  • Cuadrado-Osorio PD, Ramírez-Mejía JM, Mejía-Avellaneda LF et al (2022) Agro-industrial residues for microbial bioproducts: a key booster for bioeconomy. Bioresour Technol Rep 20:101232. https://doi.org/10.1016/j.biteb.2022.101232

    Article  CAS  Google Scholar 

  • Dawson CJ, Hilton J (2011) Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36:S14eS22

    Google Scholar 

  • De Boer IJ, van Ittersum MK (2018) Circularity in agricultural production. Wageningen University & Research

  • De Corato U (2020) Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: a review under the perspective of a circular economy. Sci Total Environ 738:139840

    PubMed  Google Scholar 

  • De Corato U (2021) Effect of value-added organic co-products from four industrial chains on functioning of plant disease suppressive soil and their potentiality to enhance soil quality: A review from the perspective of a circular economy. Appl Soil Ecol 168:104221

    Google Scholar 

  • De Corato U, Pane C, Bruno GL et al (2015) Co-products from a biofuel production chain in crop disease management: a review. Crop Prot 68:12–26. https://doi.org/10.1016/j.cropro.2014.10.025

    Article  Google Scholar 

  • Debref R, Vivien F-D (2021) Quelle bioéconomie ? Les enseignements d’une controverse en France à la fin des années 1970. Econ Rurale 376:19–35

    Google Scholar 

  • Debref R, Pyka A, Morone P (2022) For an institutionalist approach to the bioeconomy: innovation, green growth and the rise of new development models. J Innov Econ Manag 38:1–9

    Google Scholar 

  • Ditzler L, van Apeldoorn DF, Pellegrini F, Antichi D, Bàrberi P, Rossing WA (2021) Current research on the ecosystem service potential of legume inclusive cropping systems in Europe. A review. Agron Sustain Dev 41:1–13

    Google Scholar 

  • Donner M, de Vries H (2023) Business models for sustainable food systems: a typology based on a literature review. Front Sustain Food Syst 7:1160097. https://doi.org/10.3389/fsufs.2023.1160097

    Article  Google Scholar 

  • Dulaurent AM, Houben D, Honvault N, Faucon MP, Chauvat M (2023) Beneficial effects of conservation agriculture on earthworm and Collembola communities in Northern France. Plant Soil 1–11

  • Duru M, Therond O (2023) Paradigmes et scénarios de transition des systèmes alimentaires pour la neutralité carbone. Cah Agric 32:23

    Google Scholar 

  • El-Maarouf-Bouteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182

    PubMed  PubMed Central  Google Scholar 

  • Emmerson M, Morales MB, Oñate JJ, Batary P, Berendse F, Liira J, Aavik T, Guerrero I, Bommarco R, Eggers S, Pärt T (2016) How agricultural intensification affects biodiversity and ecosystem services. Academic Press Adv Ecol Res 55:43–97

    Google Scholar 

  • European Commission, Directorate-General for Research and Innovation (2018) A sustainable bioeconomy for Europe: strengthening the connection between economy, society and the environment: updated bioeconomy strategy

  • European Environment Agency (2018) The circular economy and the bioeconomy: partners in sustainability. LU, Publications Office. https://data.europa.eu/doi/10.2800/02937

  • Ewert F, Baatz R, Finger R (2023) Agroecology for a sustainable agriculture and food system: from local solutions to large-scale adoption. Annu Rev Resour Econ 15

  • Fattah KP, Sinno S, Atabay S, Khan Z, Al-Dawood Z, Yasser AK, Temam R (2022) Impact of magnesium sources for phosphate recovery and/or removal from waste. Energies 15:4585

    CAS  Google Scholar 

  • Faucon MP, Houben D, Reynoird JP, Mercadal-Dulaurent AM, Armand R, Lambers H (2015) Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Adv Agron 134:51–79

    Google Scholar 

  • Faucon MP, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22:385–394

    PubMed  CAS  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    CAS  Google Scholar 

  • Fritsch C, Staebler A, Happel A et al (2017) Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability 9. https://doi.org/10.3390/su9081492

  • Gaitán-Cremaschi D, Klerkx L, Duncan J, Trienekens JH, Huenchuleo C, Dogliotti S, Contesse ME, Rossing WA (2019) Characterizing diversity of food systems in view of sustainability transitions. A review. Agron Sustain Dev 39:1–22

    PubMed  Google Scholar 

  • Garbelini LG, Debiasi H, Junior AAB, Franchini JC, Coelho AE, Telles TS (2022) Diversified crop rotations increase the yield and economic efficiency of grain production systems. Eur J Agron 137:126528

    Google Scholar 

  • Garnier J, Le Noë J, Marescaux A, Sanz-Cobena A, Lassaletta L, Silvestre M, Billen G (2019) Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): from traditional agriculture to conventional intensive systems. Sci Total Environ 660:1486–1501

    PubMed  CAS  Google Scholar 

  • Gawel E, Pannicke N, Hagemann N (2019) A path transition towards a bioeconomy—The crucial role of sustainability. Sustainability 11:3005

    Google Scholar 

  • Geels FW (2011) The multi-level perspective on sustainability transitions: responses to seven criticisms. Environ Innov Soc Transit 1:24–40

    Google Scholar 

  • Girard G (2022) Does circular bioeconomy contain singular social science research questions, especially regarding agriculture–industry nexus?. CCB 100030

  • Gliessman S (2013) Agroecology and food system transformation. Agroecol Sustain Food Syst 37:1–2

    Google Scholar 

  • Gliessman SR (2020) Transforming food and agriculture systems with agroecology. Agric Hum Values 37:547–548

    Google Scholar 

  • Gómez-Suárez AD, Nobile C, Faucon MP, Pourret O, Houben D (2020) Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere. Sustainability 12:2212

    Google Scholar 

  • Gu Y, Jerome F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550–9570

    PubMed  CAS  Google Scholar 

  • Harder R, Giampietro M, Mullinix K, Smukler S (2021) Assessing the circularity of nutrient flows related to the food system in the Okanagan bioregion, BC Canada. Resour Resour Conserv Recycl 174:105842

    CAS  Google Scholar 

  • Hidalgo D, Corona F, Martín-Marroquín JM (2021) Nutrient recycling: from waste to crop. Biomass Convers Biorefin 11:207–217

    CAS  Google Scholar 

  • Hill SB (1985) Redesigning the food system for sustainability. Alternatives 12:32–36

    Google Scholar 

  • Honvault N, Houben D, Firmin S, Meglouli H, Laruelle F, Fontaine J, Lounès-Hadj Sahraoui A, Coutu A, Lambers H, Faucon MP (2021) Interactions between below-ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition. Funct Ecol 35:1603–1619

    CAS  Google Scholar 

  • Hu Q, Jung J, Chen D, Leong K, Song S, Li F, Mohan BC, Yao Z, Prabhakar AK, Lin XH, Lim EY (2021) Biochar industry to circular economy. Sci Total Environ 757:143820

    PubMed  CAS  Google Scholar 

  • Huang H, von Lampe M, van Tongeren F (2011) Climate change and trade in agriculture. Food Policy 36:S9–S13

    Google Scholar 

  • IEA (2017) World Energy Outlook 2017, IEA, Paris. https://www.iea.org/reports/world-energy-outlook-2017

  • Jander W, Grundmann P (2019) Monitoring the transition towards a bioeconomy: a general framework and a specific indicator. J Clean Prod 236:117564

    Google Scholar 

  • Jian J, Du X, Reiter MS, Stewart RD (2020) A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem 143

  • Jindo K, Audette Y, Higashikawa FS, Silva CA, Akashi K, Mastrolonardo G, Sánchez-Monedero MA, Mondini C (2020) Role of biochar in promoting circular economy in the agriculture sector. Part 1: a review of the biochar roles in soil N, P and K cycles. Chem Biol Technol Agric 7:1–12

  • Jonkman J, Kanellopoulos A, Bloemhof JM (2019) Designing an eco-efficient biomass-based supply chain using a multi-actor optimisation model. J Clean Prod 210:1065–1075

    Google Scholar 

  • Kervroëdan L, Armand R, Rey F, Faucon MP (2021) Trait-based sediment retention and runoff control by herbaceous vegetation in agricultural catchments: a review. Land Degrad Dev 32:1077–1089

    Google Scholar 

  • Kervroëdan L, Houben D, Guidet J, Dulaurent AM, Marraccini E, Deligey A, ..., Faucon MP (2022) Agri-environmental assessment of conventional and alternative bioenergy cropping systems promoting biomass productivity. Front Agric Sci Eng 2:284–294

  • Keswani C (ed) (2021) Agri-Based Bioeconomy: Reintegrating Trans-Disciplinary Research and Sustainable Development Goals. CRC Press - Taylor & Francis Group, Boca Raton, 330 pages. ISBN: 978-0-367471-00-2

  • Khanal C, Harshman D (2022) Evaluation of summer cover crops for host suitability of Meloidogyne enterolobii. Crop Prot 151:105821

    Google Scholar 

  • Koppelmäki K, Parviainen T, Virkkunen E, Winquist E, Schulte RP, Helenius J (2019) Ecological intensification by integrating biogas production into nutrient cycling: modeling the case of agroecological symbiosis. Agric Syst 170:39–48

    Google Scholar 

  • Kuroda K, Katahira T, Yamada M et al (2023) Co-composting of sewage sludge with plant biomass, and analysis of microbiome relevant to plant growth promotion. Bioresour Technol Rep 22:101401. https://doi.org/10.1016/j.biteb.2023.101401

    Article  CAS  Google Scholar 

  • Lahlali R, Ezrari S, Radouane N et al (2022) Biological control of plant pathogens: a global perspective. Microorganisms 10. https://doi.org/10.3390/microorganisms10030596

  • Lambers H, Cong W-F (2022) Challenges providing multiple ecosystem benefits for sustainable managed systems. Front Agric Sci Eng 9:170–176

    Google Scholar 

  • Lamine C, Magda D, Amiot MJ (2019) Crossing sociological, ecological, and nutritional perspectives on agrifood systems transitions: towards a transdisciplinary territorial approach. Sustainability 11:1284

    Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach AM, Galloway JN (2014) Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118:225–241

    Google Scholar 

  • Lawrence G (2017) Re-evaluating food systems and food security: a global perspective. J Sociol 53:774–796

    Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang FS (2014) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69

    PubMed  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    PubMed  PubMed Central  CAS  Google Scholar 

  • Magrini MB, Béfort N, Nieddu M (2019a) Technological lock-in and pathways for crop diversification in the bio-economy. In Agroecosystem Diversity. Academic Press, p 375–388

  • Magrini MB, Martin G, Magne MA, Duru M, Couix N, Hazard L, Plumecocq G (2019b) Agroecological Transition from Farms to Territorialised Agri-Food Systems: Issues and Drivers 69–98. In: Bergez JE, Audouin E, Therond O (eds) Agroecological Transitions: From Theory to Practice in Local Participatory Design. Springer, Cham

    Google Scholar 

  • Mahé I, Chauvel B, Colbach N, Cordeau S, Gfeller A, Reiss A, Moreau D (2022) Deciphering field-based evidences for crop allelopathy in weed regulation. A review. Agron Sustain Dev 42:50

    Google Scholar 

  • Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GC, Van der Heijden MG, Kardol P (2018) Plant–soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    PubMed  Google Scholar 

  • Marraccini E, Gotor AA, Scheurer O, Leclercq C (2020) An innovative land suitability method to assess the potential for the introduction of a new crop at a regional level. Agronomy 10:330

    Google Scholar 

  • Mavhungu A, Masindi V, Foteinis S, Mbaya R, Tekere M, Kortidis I, Chatzisymeon E (2020) Advocating circular economy in wastewater treatment: Struvite formation and drinking water reclamation from real municipal effluents. J Environ Chem Eng 8:103957

    CAS  Google Scholar 

  • McCormick K, Kautto N (2013) The bioeconomy in Europe: an overview. Sustainability 5(6):2589–2608

    Google Scholar 

  • Meynard JM, Charrier F, Fares MH, Le Bail M, Magrini MB, Charlier A, Messéan A (2018) Socio-technical lock-in hinders crop diversification in France. Agron Sustain Dev 38:1–13

    Google Scholar 

  • Mikkilä M, Utanun P, Luhas J, Horttanainen M, Linnanen L (2021) Sustainable circular bioeconomy—feasibility of recycled nutrients for biomass production within a pulp and paper integration in Indonesia, Southeast Asia. Sustainability 13:10169

    Google Scholar 

  • Mohlala LM, Bodunrin MO, Awosusi AA et al (2016) Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa: a short overview. Alex Eng J 55:3025–3036

    Google Scholar 

  • Montazeaud G, Violle C, Fréville H, Luquet D, Ahmadi N, Courtois B, Bouhaba I, Fort F (2018) Crop mixtures: does niche complementarity hold for belowground resources? An experimental test using rice genotypic pairs. Plant Soil 424:187–202

    CAS  Google Scholar 

  • Mrówczyńska-Kamińska A, Bajan B, Pawłowski KP, Genstwa N, Zmyślona J (2021) Greenhouse gas emissions intensity of food production systems and its determinants. PLoS ONE 16:e0250995

    PubMed  PubMed Central  Google Scholar 

  • Mueller KE, Tilman D, Fornara DA, Hobbie SE (2013) Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94:787–793

    Google Scholar 

  • Muscat A, de Olde EM, Ripoll-Bosch R, Van Zanten HH, Metze TA, Termeer CJ, van Ittersum MK, de Boer IJ (2021) Principles, drivers and opportunities of a circular bioeconomy. Nat Food 2:561–566

    PubMed  Google Scholar 

  • Myers N, Kent J, Smith K (2005) The new atlas of planet management, Revised. University of California Press, Berkeley

    Google Scholar 

  • Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291

    PubMed  CAS  Google Scholar 

  • Niang A, Torre A, Bourdin S (2022) Territorial governance and actors’ coordination in a local project of anaerobic digestion. A social network analysis. Eur Plan Stud 30:1251–1270. https://doi.org/10.1080/09654313.2021.1891208

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development, OECD International Futures Programme, (ed) (2009) The bioeconomy to 2030: designing a policy agenda. Organization for Economic Co-operation and Development, Paris

  • O’Connor J, Hoang SA, Bradney L et al (2021) A review on the valorisation of food waste as a nutrient source and soil amendment. Environ Pollut 272:115985

    PubMed  Google Scholar 

  • Pacifico D, Lanzanova C, Pagnotta E et al (2021) Sustainable use of bioactive compounds from solanum tuberosum and brassicaceae wastes and by-products for crop protection—a review. Molecules 26. https://doi.org/10.3390/molecules26082174

  • Pandiselvam R, Mayookha VP, Anjineyulu Kothakota L, Sharmila SV, Ramesh CP, Bharathi K, Gomathy SV (2020) Impact of ozone treatment on seed germination - a systematic review. Ozone Sci Eng 42:331–346

    CAS  Google Scholar 

  • Pandit MA, Kumar J, Gulati S et al (2022) Major biological control strategies for plant pathogens. Pathogens 11. https://doi.org/10.3390/pathogens11020273

  • Paritosh K, Kushwaha SK, Yadav M, Pareek N, Chawade A, Vivekanand V (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int 2017:1–19

    Google Scholar 

  • Pastor AV, Palazzo A, Havlik P, Biemans H, Wada Y, Obersteiner M, ..., Ludwig F (2019) The global nexus of food–trade–water sustaining environmental flows by 2050. Nat Sustain 6: 499–507

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333:1289–1291

    PubMed  CAS  Google Scholar 

  • Poirier V, Roumet C, Munson AD (2018) The root of the matter: linking root traits and soil organic matter stabilization processes. Soil Biol Biochem 120:246–259

    CAS  Google Scholar 

  • Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360:987–992

    PubMed  CAS  Google Scholar 

  • Pradel M, Aissani L, Villot J, Baudez JC, Laforest V (2016) From waste to added value product: towards a paradigm shift in life cycle assessment applied to wastewater sludge–a review. J Clean Prod 131:60–75

    CAS  Google Scholar 

  • Pretty J (2018) Intensification for redesigned and sustainable agricultural systems. Science 362:eaav0294

    PubMed  Google Scholar 

  • Rakotovao M, Godard L, Sauvée L (2021) Dynamique agricole d’une filière de valorisation de la biomasse: cas de la Centrale Biométhane en Vermandois. Économie rurale 376:37–53

    Google Scholar 

  • Rana MA, Mahmood R (2021) Soil urease inhibition by various plant extracts. PLoS ONE 16(10):e0258568

    PubMed  PubMed Central  CAS  Google Scholar 

  • Remondino M, Valdenassi L (2018) Different uses of ozone: environmental and corporate sustainability. Literature review and case study. Sustainability 10:4783

    Google Scholar 

  • Rifna EJ, Ratish Ramanan K, Mahendran R (2019) Emerging technology applications for improving seed germination. Trends Food Sci Technol 86:95–108

    CAS  Google Scholar 

  • Rizzo D, Marraccini E, Lardon S (Eds.) (2022) Landscape Agronomy: Advances and Challenges of a Territorial Approach to Agricultural Issues

  • Robles Á, Aguado D, Barat R, Borrás L, Bouzas A, Giménez JB, Martí N, Ribes J, Ruano MV, Serralta J, Ferrer J (2020) New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the circular economy. Bioresour Technol 300:122673

    PubMed  CAS  Google Scholar 

  • Rodriguez C, Carlsson G, Englund JE, Flöhr A, Pelzer E, Jeuffroy MH, Makowski D, Jensen ES (2020) Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems. A meta-analysis. Eur J Agron 118:126077

    CAS  Google Scholar 

  • Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA (2020) Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 5:314–330

    PubMed  CAS  Google Scholar 

  • Sachs I (1980) Studies in Political Economy of Development. Pergamon

  • Scavo A, Abbate C, Mauromicale G (2019) Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant Soil 442:23–48

    CAS  Google Scholar 

  • Sena M, Seib M, Noguera DR, Hicks A (2021) Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment. J Clean Prod 280:124222

    CAS  Google Scholar 

  • Sivaranjani S, Arun Prasath V, Pandiselvam R, Kothakota A, Mousavi Khaneghah A (2021) Recent advances in applications of ozone in the cereal industry. LWT - Food Sci Technol 146:111412

    CAS  Google Scholar 

  • Smith P, Bustamante M, Ahammad H, Clark H, Dong H, Elsiddig EA, Haberl H, Harper R, House J, Jafari M, Masera O (2014) Agriculture, forestry and other land use (AFOLU). In Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, p 811–922

  • Starke JR, Metze TA, Candel JJ, Termeer CJ (2022) Conceptualizing controversies in the EU circular bioeconomy transition. Ambio 51:2079–2090

    PubMed  PubMed Central  Google Scholar 

  • Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M (2013) Green revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc Natl Acad Sci 21:8363–8368

    Google Scholar 

  • Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MGA, Liebman M, Hallin S (2020) Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv 6:eaba1715

    PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    PubMed  CAS  Google Scholar 

  • Tittonell P (2014) Ecological intensification of agriculture—sustainable by nature. Curr Opin Environ Sustain 8:53–61

    Google Scholar 

  • Toop TA, Ward S, Oldfield T, Hull M, Kirby ME, Theodorou MK (2017) AgroCycle–developing a circular economy in agriculture. Energy Procedia 123:76–80

    Google Scholar 

  • Torre A (2023) Contribution to the theory of territorial development: a territorial innovations approach. Reg Stud:1–16

  • Tsegaye B, Jaiswal S, Jaiswal AK (2021) Food waste biorefinery: pathway towards circular bioeconomy. Foods 10:1174

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tubiello FN, Salvatore M, Rossi S, Ferrara A, Fitton N, Smith P (2013) The FAOSTAT database of greenhouse gas emissions from agriculture. Environ Res Lett 8:015009

    Google Scholar 

  • Valve H, Ekholm P, Luostarinen S (2020) The circular nutrient economy: Needs and potentials of nutrient recycling. In: Brandão M, Lazarevic D, Finnveden G (eds) Handbook of the Circular Economy. Edward Elgar Publishing, Cheltenham, 2020:358–368

  • van Zanten HH, Mollenhorst H, Klootwijk CW, van Middelaar CE, de Boer IJ (2016) Global food supply: land use efficiency of livestock systems. Int J Life Cycle Assess 21:747–758

    Google Scholar 

  • Vassileva M, Malusà E, Sas-Paszt L, Trzcinski P, Galvez A, Flor-Peregrin E, Shilev S, Canfora L, Mocali S, Vassilev N (2021) Fermentation strategies to improve soil bio-inoculant production and quality. Microorganisms 9:1254

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vivien FD, Nieddu M, Befort N, Debref R, Giampietro M (2019) The hijacking of the bioeconomy. Ecol Econ 159:189–197. https://doi.org/10.1016/j.ecolecon.2019.01.027

    Article  Google Scholar 

  • Vivien FD, Altukhova-Nys Y, Bascourret JM, Befort N, Benoit S, Debref R, Grouiez P, Ory JF, Petitjean JL (2022) PSDR4 BIOCALa bioéconomie en Champagne Ardenne: une variété de modèles de développement et d’agriculture. Innov Agron 86:307–318

    Google Scholar 

  • Wang G, Bei S, Li J, Bao X, Zhang J, Schultz PA, Li H, Li L, Zhang F, Bever JD, Zhang J (2021) Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping. J Appl Ecol 58:496–506

    Google Scholar 

  • Wang G, Li X, Xi X, Cong WF (2022) Crop diversification reinforces soil microbiome functions and soil health. Plant Soil 476:375–383

    CAS  Google Scholar 

  • Weisberger D, Nichols V, Liebman M (2019) Does diversifying crop rotations suppress weeds? A meta-analysis. PLos One 14:e0219847

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wood SW, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production

  • Yu RP, Yang H, Xing Y, Zhang WP, Lambers H, Li L (2022) Belowground processes and sustainability in agroecosystems with intercropping. Plant Soil:1–26

  • Yuille A, Rothwell S, Blake L, Forber KJ, Marshall R, Rhodes R, Waterton C, Withers PJ (2022) UK government policy and the transition to a circular nutrient economy. Sustainability 14:3310

    Google Scholar 

  • Zin MMT, Kim DJ (2021) Simultaneous recovery of phosphorus and nitrogen from sewage sludge ash and food wastewater as struvite by Mg-biochar. J Hazard Mater 403:123704

    Google Scholar 

Download references

Acknowledgements

The authors thank SFR Condorcet FR CNRS 3417 and UniLaSalle for “agroecology workshop” organized at UniLaSalle, Beauvais, on 19 November 2021, Virginie Cendret (UniLaSalle) and Gwenaelle Lashermes (INRAE) and Olivier Pourret (UniLaSalle) for his pre-submission review of the manuscript.

Funding

The project was partly funded by SFR Condorcet FR CNRS 3417.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote this manuscript.

Corresponding author

Correspondence to Michel-Pierre Faucon.

Additional information

Responsible Editor: Hans Lambers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faucon, MP., Aussenac, T., Debref, R. et al. Combining agroecology and bioeconomy to meet the societal challenges of agriculture. Plant Soil 492, 61–78 (2023). https://doi.org/10.1007/s11104-023-06294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06294-y

Keywords

Navigation