Skip to main content
Log in

The potential linkage between antibiotic resistance genes and microbial functions across soil–plant systems

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The proliferation of antibiotic resistance genes (ARGs) is a growing public health concern worldwide. Several studies have substantiated the significant role played by the plant microbiome in facilitating the transmission of antibiotic resistance, thereby posing a substantial threat to human health. However, the underlying mechanism of the transmission of antibiotic resistance from soil to plants is still largely unexplored.

Methods

In the current study, we selected Sedum alfredii as a model plant to investigate the occurrence and distribution of ARGs across the soil–plant interface.

Results

Our results showed that 20.34% of ARGs were significantly shifted between rhizosphere and bulk soils and were linked to distinct variations in bacterial functions across the soil-plant interface. Specifically, the ARGs enriched in the rhizosphere were significantly correlated to microbial functions of signaling pathways and degradation pathways. Conversely, the ARGs depleted in rhizosphere were significantly correlated to microbial functions of biosynthesis pathways, nutrient cycling, and ABC transport system. Moreover, our investigation involved metagenomic contig assembly, providing compelling evidence that these aforementioned relationships were indeed detected in the assembled bins.

Conclusions

The results of our study revealed a clear association between the distribution of ARGs and changes in bacterial functions attributable to the assemblage of the rhizosphere microbiome at the soil-plant interface. These findings significantly contribute to enhancing our comprehension of the mechanism underlying the transmission of ARGs from bulk soils to rhizosphere soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W, He X (2015) Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biol Biochem 80:70–78

    Article  CAS  Google Scholar 

  • Andersson DI, Levin BR (1999) The biological cost of antibiotic resistance. Curr Opin Microbiol 2:489–493

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Schulze-Lefert P, Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  PubMed  CAS  Google Scholar 

  • Balsanelli E, Tadra-Sfeir MZ, Faoro H, Pankievicz VCS, de Baura VA, Pedrosa FO, de Souza EM, Dixon R, Monteiro RA (2016) Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere. Environ Microbiol 18:2343–2356

    Article  PubMed  CAS  Google Scholar 

  • Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M-N, Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M-N, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL (2015) Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Muench PC, Weiman A, Droege J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant Microbe in 28:1049–1058

    Article  CAS  Google Scholar 

  • Chen QL, An XL, Li H, Su J, Ma Y, Zhu YG (2016) Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ in 92–93:1–10

    Google Scholar 

  • Chen QL, Cui HL, Su JQ, Penuelas J, Zhu YG (2019) Antibiotic resistomes in plant microbiomes. Trend Plant Sci 24:530–541

    Article  CAS  Google Scholar 

  • Choi CW, Yun SH, Kwon SO, Leem SH, Choi JS, Yun CY, Kim SI (2010) Analysis of cytoplasmic membrane proteome of streptococcus pneumoniae by shotgun proteomic approach. J Microbiol 48:872–876

    Article  PubMed  CAS  Google Scholar 

  • de Vries FT, Wallenstein MD (2017) Below-ground connections underlying above-ground food production: a framework for optimizing ecological connections in the rhizosphere. J Ecol 105:913–920

    Article  Google Scholar 

  • Deng JM, Xiao XF, Fan WJ, Ning ZP, Xiao EZ (2022) relevance of the microbial community to Sb and as biogeochemical cycling in natural wetlands. Sci Tot Environ 818:151826

    Article  CAS  Google Scholar 

  • Doermann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hueckelhoven R (2014) Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. New Phytol 204:815–822

    Article  CAS  Google Scholar 

  • Donat S, Streker K, Schirmeister T, Rakette S, New Phytologist Stehle T, Liebeke M, Lalk M, Ohlsen K (2009) Transcriptome and functional analysis of the eukaryotic-type serine/threonine kinase PknB in Staphylococcus aureus. J Bacteriol 191:4056–4069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgell K (1989) USEPA method study 37 sw-846 method 3050 acid digestion of sediments, sludges, and soils. Report for September 1986-December 1987 (Final). US Environmental Protection Agency, Environmental Monitoring Systems Laboratory

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:911–920

    Article  Google Scholar 

  • El Khoury JY, Boucher N, Bergeron MG, Leprohon P, Ouellette M (2017) Penicillin induces alterations in glutamine metabolism in Streptococcus pneumoniae. Sci Rep 7:14587

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson MG, Ulijasz AT, Weisblum B (2005) Bacterial 2-component signal transduction systems: a fluorescence polarization screen for response regulator-protein binding. J Biomol Screen 10:270–274

    Article  PubMed  CAS  Google Scholar 

  • Fahrenfeld N, Knowlton K, Krometis LA, Hession WC, Xia K, Lipscomb E, Libuit K, Green BL, Pruden A (2014) Effect of manure application on abundance of antibiotic resistance genes and their attenuation rates in soil: field-scale mass balance approach. Environ Sci Technol 48:2643–2650

    Article  PubMed  CAS  Google Scholar 

  • Fan WJ, Deng JM, Shao L, Jiang SM, Xiao TF, Sun WM, Xiao EZ (2022) The rhizosphere microbiome improves the adaptive capabilities of plants under high soil cadmium conditions. Front Plant Sci 13:914103

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G (2014) Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gooderham WJ, Gellatly SL, Sanschagrin F, McPhee JB, Bains M, Cosseau C, Levesque RC, Hancock RE (2009) The sensor kinase PhoQ mediates virulence in Pseudomonas aeruginosa. Microbiology 155:699–711

    Article  PubMed  CAS  Google Scholar 

  • Gustafson J, Strässle A, Hächler H, Kayser FH, Berger-Bächi B (1994) The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J Bacteriol 176:1460–1467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harth G, Horwitz MA (2003) Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun 71:456–464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hong HJ, Hutchings MI, Neu JM, Wright GD, Paget MSB, Buttner MJ (2004) Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 52:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Hou Q, Kolodkin-Gal I (2020) Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol Ecol 96:142

    Article  Google Scholar 

  • Hu HW, Wang JT, Li J, Shi XZ, Ma YB, Chen D, He JZ (2017) Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils. Environ Sci Technol 51:790–800

    Article  PubMed  CAS  Google Scholar 

  • Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:566–573

  • Khan MT, Khan TA, Ahmad I, Muhammad S, Wei DQ (2022) Diversity and novel mutations in membrane transporters of Mycobacterium tuberculosis. Brief Funct Genomics 22:168–179

    Article  CAS  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JM (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci USA 112:10967–10972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Jousset A, de Boer W, Carrion VJ, Zhang T, Wang X, Kuramae EE (2019) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13:738–751

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Yang R, Häggblom MM, Li M, Guo L, Li B, Kolton M, Cao Z, Soleimani M, Chen Z, Xu Z, Gao W, Yan B, Sun W (2022) Characterization of diazotrophic root endophytes in chinese silvergrass (Miscanthus sinensis). Microbiome 10(1):186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd NA, Nazaret S, Barkay T (2018) Whole genome sequences to assess the link between antibiotic and metal resistance in three coastal marine bacteria isolated from the mummichog gastrointestinal tract. Mar Pollut Bull 135:514–520

    Article  PubMed  CAS  Google Scholar 

  • Long X, Ni W, Fu C, Yang X, Long X, Ni W, Fu C (2002) Sedum alfredii H: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genom Biol 15:550

  • Luo G, Li B, Li LG, Zhang T, Angelidaki I (2017) Antibiotic resistance genes and correlations with microbial community and metal resistance genes in full-scale biogas reactors as revealed by metagenomic analysis. Environ Sci Technol 51:4069–4080

    Article  PubMed  CAS  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Maria-Neto S, Cândido EdS, Rodrigues DR, de Sousa DA, da Silva EM, de Moraes LMP, Otero-Gonzalez AdJ, Magalhães BS, Dias SC, Franco OL (2012) Deciphering the magainin resistance process of Escherichia coli strains in light of the cytosolic proteome. Antimicrob Agents Ch 56:1714

    Article  CAS  Google Scholar 

  • Mende DR, Waller AS, Sunagawa S, Järvelin AI, Chan MM, Arumugam M, Raes J, Bork P (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. Plos One 7:e31386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Merino-Martin L, Griffiths RI, Gweon HS, Furget-Bretagnon C, Oliver A, Mao Z, Le Bissonnais Y, Stokes A (2020) Rhizosphere bacteria are more strongly related to plant root traits than fungi in temperate montane forests: insights from closed and open forest patches along an elevational gradient. Plant Soil 450:183–200

    Article  Google Scholar 

  • Minoru K, Susumu G, Yoko S, Masayuki K, Miho F, Mao T (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:199–205

    Article  Google Scholar 

  • Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, Pelletier E, Bonde I, Nielsen T, Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le Chatelier E, Pelletier E, Bonde I, Nielsen T, Manichanh C, Arumugam M, Batto J-M, Quintanilha dos Santos MB, Blom N, Borruel N, Burgdorf KS, Boumezbeur F, Casellas F, Doré J, Dworzynski P, Guarner F, Hansen T, Hildebrand F, Kaas RS, Kennedy S, Kristiansen K, Kultima JR, Léonard P, Levenez F, Lund O, Moumen B, Le Paslier D, Pons N, Pedersen O, Prifti E, Qin J, Raes J, Sørensen S, Tap J, Tims S, Ussery DW, Yamada T, Renault P, Sicheritz-Ponten T, Bork P, Wang J, Brunak S, Ehrlich SD (2014) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32:822–828

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MH, Grisard EC, Hungria M, Madeira HM, Nodari RO, Osaku CC et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:e1002064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Q, Preston GM, MacLean RC (2014) Linking system-wide impacts of rna polymerase mutations to the fitness cost of rifampin resistance in Pseudomonas aeruginosa. MBio 5:e01562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in alanyl serine. Antimicrob Agents Ch 49:21–25

    Article  CAS  Google Scholar 

  • Touati A, Bellil Z, Barache D, Mairi A (2021) Fitness cost of antibiotic resistance in Staphylococcus aureus: a systematic review. Microb Drug Resist 27:1218–1231

    Article  PubMed  CAS  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci USA 111:15202–15207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Hu R, Strong PJ, Zhuang W, Huang W, Luo Z, Yan Q, He Z, Shu L (2021) Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J Hazard Mater 408:124985

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Ding S, Qiao Z, Su Y, Xie B (2020) Insights into factors driving the transmission of antibiotic resistance from sludge compost-amended soil to vegetables under cadmium stress. Sci Tot Environ 729:138990

    Article  CAS  Google Scholar 

  • Weyrauch P, Heker I, Zaytsev AV, von Hagen CA, Arnold ME, Golding BT, Meckenstock RU (2020) The 5,6,7,8-Tetrahydro-2-naphthoyl-coenzyme A reductase reaction in the anaerobic degradation of naphthalene and identification of downstream metabolites. Appl Environ Microbiol 86:e00996–e00920

  • Wu Y, Simmons B, Singer S (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607

    Article  PubMed  CAS  Google Scholar 

  • Xiao E, Ning Z, Xiao T, Sun W, Jiang S (2021) Soil bacterial community functions and distribution after mining disturbance. Soil Biology Biochem 157:108232

    Article  CAS  Google Scholar 

  • Xiao EZ, Sun WM, Ning ZP, Wang YQ, Meng FD, Deng JM, Fan WJ, Xiao TF (2022) Occurrence and dissemination of antibiotic resistance genes in mine soil ecosystems. Appl Microbiol Biotechnol 106:6289–6299

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Xu J, Mao D, Luo Y (2017) Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environ Pollut 220:900–908

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J, Deng X, Ancona V, Lu Z, Zhong B, Roper MC, Capote N, Catara V, Pietersen G, Vernière C, Al-Sadi AM, Li L, Yang F, Xu X, Wang J, Yang H, Jin T, Wang N (2018a) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:4894

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zarecki R, Medina S, Ofaim S, Liu X, Chen C, Hu S, Brom D, Gat D, Porob S, Eizenberg H, Ronen Z, Jiang J, Freilich S (2018b) Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. ISME J 13:494–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye LM, Hildebrand F, Dingemans J, Ballet S, Laus G, Matthijs S, Berendsen R, Cornelis P (2014) Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp pathogens. PLoS ONE 9:e110038

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeung AT, Bains M, Hancock RE (2011) The sensor kinase CbrA is a global regulator that modulates metabolism, virulence, and antibiotic resistance in Pseudomonas aeruginosa. J Bacteriol 193:918–931

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Chang F, Shi P, Ye L, Zhou Q, Pan Y, Li A (2019) Antibiotic Resistome Alteration by different disinfection strategies in a full-scale drinking Water Treatment Plant deciphered by Metagenomic Assembly. Environ Sci Technol 53:2141–2150

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Chen L, Ye C, Yu X (2018) Co-selection of antibiotic resistance via copper shock loading on bacteria from a drinking water bio-filter. Environ Pollut 233:132–141

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (41807127, 41830753, U1612442) and the Foundation of Guangzhou City for basic research projects (202201010283, 202201010153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tangfu Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no current or potential competing financial interests.

Additional information

Responsible Editor: Paul Bodelier.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.14 MB)

ESM 2

(XLSX 26.0 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, E., Sun, W., Deng, J. et al. The potential linkage between antibiotic resistance genes and microbial functions across soil–plant systems. Plant Soil 493, 589–602 (2023). https://doi.org/10.1007/s11104-023-06247-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06247-5

Keywords

Navigation