Skip to main content
Log in

Microbe-enriched farm yard manure (MFYM) approach for the suppression of Ralstonia solanacearum Yabuuchi (Smith) inciting bacterial wilt disease in eggplant (Solanum melongena L.)

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Soil-borne bacterial wilt disease caused by the bacterial plant pathogen Ralstonia solanacearum is a serious concern worldwide, resulting in huge economic losses in solanaceous vegetables. This study confirms the field efficacy of microbe-enriched organic fertilizer application in successful management of eggplant bacterial wilt disease.

Methods

Four potential Bacillus strains isolated from diverse soils of Andaman Islands were evaluated using the microbe-enriched farmyard manure (MFYM) approach for bacterial wilt suppression and yield increase in both the greenhouse and field conditions. Also, changes in the bacterial wilt pathogen and putative Bacillus counts on MFYM applications were studied.

Results

Bacillus strains used in this study were confirmed for their indole acetic acid (IAA) production, phosphate solubilization, and siderophore production traits in vitro. In addition, species identity was confirmed through rpoB gene sequences analysis. In both greenhouse and field experiments, MFYM treatments showed better biological control potential and increase in yield compared to farmyard manure (FYM) alone and unamended control treatments. In comparison to control and other treatments, the MIC-Consortia demonstrated the highest biocontrol potential across all treatments in pot culture (90.6%), first field (78.8% and 72.1%), and second field (61.5% and 75%) studies, respectively. Similarly, the MIC-Consortia showed highest yield in the first field (61.5% and 75%) and second field (60% and 48.1%), respectively, when compared to other treatments. Further, the studies of microbial counts in treated soils revealed that the pathogen population increased throughout the cropping season, but the rate of increase was found slower in MFYM treatments.

Conclusion

This study showed that the MIC-Consortia when applied along with FYM could effectively suppress eggplant bacterial wilt disease incidence and enhance yield performance in two different field conditions over two successive years. The results could be used in devising efficient eco-friendly management strategies for bacterial wilt disease in organic farming practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd-Elgawad MMM, Askary TH (2020) Factors affecting success of biological agents used in controlling the plant-parasitic nematodes. Egypt J Biol Pest Control 30:17

    Article  Google Scholar 

  • Arzanesh MH, Alikhani HA, Khavazi K, Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205

    Article  CAS  Google Scholar 

  • Bonaterra A, Badosa E, Daranas N, Bonaterra A, Badosa E, Daranas N, Francés J, Roselló G, Montesinos E (2022) Bacteria as biological control agents of plant diseases. Microorganisms 10:1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulter JI, Boland GJ, Trevors JT (2000) Compost: a study of the development process and end-product potential for suppression of turfgrass disease. World J Microbiol Biotechnol 16:115–134

    Article  CAS  Google Scholar 

  • Brimner TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agric Ecosyst Environ 100:3–16

    Article  Google Scholar 

  • Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria, 573–644

  • Ding C, Shen Q, Zhang R, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366:453–466

    Article  CAS  Google Scholar 

  • Elshaghabee FMF, Rokana N, Gulhane RD, Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490

    Article  PubMed  PubMed Central  Google Scholar 

  • French ER, Gutarra L, Aley P, Elphinstone J (1995) Culture media for Pseudomonas solanacearum isolation, identification and maintenance. Fitopatologia 30(3):126–30

  • Gamliel A, Austerweil M, Kritzman G (2000) Non-chemical approach to soilborne pest management–organic amendments. Crop Prot 19:847–853

    Article  Google Scholar 

  • Ge C, Liu B, Zhu Y et al (2004) Study on the methods on identifying the virulence of Ralstonia solanacearum using tissue cultured tomatoes. Wuyi Sci J 20:13–16

    Google Scholar 

  • Guo J-H, Qi H-Y, Guo Y-H, Guo J-H, Qi H-Y, Guo Y-H, Ge H-L, Gong L-Y, Zhang L-X, Sun P-H (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control 29:66–72

    Article  Google Scholar 

  • Han H, Zhang S, Sun X (2009) A review on the molecular mechanism of plants rooting modulated by auxin. Afr J Biotechnol 8

  • Hao Y, Wei J, Liu C et al (2009) Effect of biological soil amendment reducing on replant diseases of cucumber. Acta Agric Boreali-Sin 24:231–234

    Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Rev Phytopathol 29(1):65–87

  • Hu Y, Li Y, Yang X, Hu Y, Li Y, Yang X, Li C, Wang L, Feng Ji, Chen S, Li X, Yang Y (2021) Effects of integrated biocontrol on bacterial wilt and rhizosphere bacterial community of tobacco. Sci Rep 11:2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Chen L, Ran W, Huang X, Chen L, Ran W, Shen Q, Yang X (2011) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism. Appl Microbiol Biotechnol 91:741–755

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Lu G, Gai Y et al (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol 65:565–573

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Validov S, Azarova T, Kamilova F, Validov S, Azarova T, Mulders I, Lugtenberg B (2005) Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ Microbiol 7:1809–1817

    Article  CAS  PubMed  Google Scholar 

  • Kumar A (2012) Methods for screening ginger (Zingiber officinale Rosc.) for bacterial wilt resistance. Indian Phytopathol 59(3):281–286

  • Kumar A, Munder A, Aravind R et al (2013) Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15:764–779

    Article  CAS  PubMed  Google Scholar 

  • Lei N, Chen L, Kiba A, Lei Ni, Chen Li, Kiba A, Hikichi Y, Zhang Y, Ohnishi K (2020) Super-multiple deletion analysis of type III effectors in Ralstonia solanacearum OE1-1 for full virulence toward host plants. Front Microbiol 11:1683

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control 42:336–344

    Article  Google Scholar 

  • Ling N, Xue C, Huang Q, Ling N, Xue C, Huang Q, Yang X, Xu Y, Shen Q (2010) Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673–683

    Article  Google Scholar 

  • Liu Y, Shi J, Feng Y, Liu Y, Shi J, Feng Y, Yang X, Li X, Shen Q (2013) Tobacco bacterial wilt can be biologically controlled by the application of antagonistic strains in combination with organic fertilizer. Biol Fertil Soils 49:447–464

    Article  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Maor R, Haskin S, Levi-Kedmi H, Sharon A (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:1852–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messiha NA, van Bruggen AH, van Diepeningen AD et al (2007a) Potato brown rot incidence and severity under different management and amendment regimes in different soil types. Eur J Plant Pathol 119:367–381

  • Messiha NA, van Diepeningen AD, Wenneker M et al (2007b) Biological soil disinfestation (BSD), a new control method for potato brown rot, caused by Ralstonia solanacearum race 3 biovar 2. Eur J Plant Pathol 117:403–415

  • Messiha NAS, Van Diepeningen AD, Farag NS, Messiha NAS, van Diepeningen AD, Farag NS, Abdallah SA, Janse JD, van Bruggen AHC (2007c) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

  • Messiha NAS, van Bruggen AHC, Franz E, Messiha NAS, van Bruggen AHC, Franz E, Janse JD, Schoeman-Weerdesteijn ME, Termorshuizen AJ, van Diepeningen AD (2009) Effects of soil type, management type and soil amendments on the survival of the potato brown rot bacterium Ralstonia solanacearum. Appl Soil Ecol 43:206–215

    Article  Google Scholar 

  • Mormak DA, Casida LE Jr (1985) Study of Bacillus subtilis endospores in soil by use of a modified endospore stain. Appl Environ Microbiol 49:1356–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  CAS  PubMed  Google Scholar 

  • Palleroni NJ, Doudoroff M (1971) Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J Bacteriol 107:690–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paudel S, Dobhal S, Alvarez AM, Arif M (2020) Taxonomy and phylogenetic research on Ralstonia solanacearum species complex: a complex pathogen with extraordinary economic consequences. Pathogens 9:886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Lu X, Zhang LN, Qiao MX (2018) Characterization of garlic endophytes isolated from the black garlic processing. Microbiologyopen 7(1):e00547

    Article  PubMed  Google Scholar 

  • Ramesh R, Joshi AA, Ghanekar MP (2009) Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L). World J Microbiol Biotechnol 25:47–55

    Article  Google Scholar 

  • Ramesh R, Phadke GS (2012) Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Prot 37:35–41

    Article  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Sakthivel K, Gautam RK, Kumar K, Sakthivel K, Gautam RK, Kumar K, Dam Roy S, Kumar A, Devendrakumar C, Vibhuti M, Neelam S, Vinatzer BA (2016) Diversity of Ralstonia solanacearum strains on the Andaman Islands in India. Plant Dis 100:732–738

    Article  CAS  PubMed  Google Scholar 

  • Sakthivel K, Manigundan K, Gautam RK, Sakthivel K, Manigundan K, Gautam RK, Jaisankar I, Sharma SK, Singh R, Roy SD (2017) Detection of antimicrobial peptide genes from antagonistic Bacillus subtilis (Bs_Ane) isolated from Neil Islands of Andaman, India. J Environ Biol 38:75–80

    Article  CAS  Google Scholar 

  • Sakthivel K, Manigundan K, Gautam RK, Sakthivel K, Manigundan K, Gautam RK, Singh PK et al (2018) Bioefficacy of antimicrobial peptide biosynthesis-gene-linked antagonistic Lysinibacillus sphaericus strains for management of bacterial plant diseases in Andaman and Nicobar Islands, India. J Environ Biol 39:517–521

    Article  CAS  Google Scholar 

  • Sakthivel K, Manigundan K, Sharma SK et al (2023) Diversity of antimicrobial peptide genes in Bacillus from the Andaman and Nicobar Islands: untapped island microbial diversity for disease management in crop plants. Curr Microbiol 80:45

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Semenov MV, Nikitin DA, Stepanov AL, Semenov VM (2019) The structure of bacterial and fungal communities in the Rhizosphere and Root-free Loci of gray forest soil. Eurasian Soil Sc 52:319–332. https://doi.org/10.1134/S1064229319010137

    Article  CAS  Google Scholar 

  • Sun Y, Züst T, Silvestro D, Sun Y, Züst T, Silvestro D, Erb M, Bossdorf O, Mateo P, Robert C, Müller‐Schärer H (2022) Climate warming can reduce biocontrol efficacy and promote plant invasion due to both genetic and transient metabolomic changes. Ecol Lett 25:1387–1400

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamietti G, Valentino D (2006) Soil solarization as an ecological method for the control of Fusarium wilt of melon in Italy. Crop Prot 25:389–397

    Article  Google Scholar 

  • Travers RS, Martin PA, Reichelderfer CF (1987) Selective process for efficient isolation of soil Bacillus spp. Appl Environ Microbiol 53:1263–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Li Z, Zhao F et al (2021) Increased organic fertilizer and reduced chemical fertilizer increased fungal diversity and the abundance of beneficial fungi on the grape berry surface in arid areas. Front Microbiol 12:628503

  • Wu K, Yuan S, Wang L (2014) Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol Fertil Soils 50:961–971

    Article  Google Scholar 

  • Xue Q-Y, Chen Y, Li S-M et al (2014) (2009) Evaluation of the strains of Acinetobacter and Enterobacter as potential biocontrol agents against Ralstonia wilt of tomato. Biological Control 48:252–258

    Article  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I et al (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov., Ralstonia solanacearum (Smith, 1986) comb. nov. Microbiol Immunol 39:897–904

  • Yadessa GB, van Bruggen AHC, Ocho FL (2010) Effects of different soil amendments on bacterial Wilt caused by Ralstonia Solanacearum and on the yield of Tomato. J Plant Pathol 92:439–450

    CAS  Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Yi Y-J, Liu R-S, Yin H-Q et al (2007) Isolation, identification and field control efficacy of an endophytic strain against tobacco bacterial wilt (Ralstonia solanacarum). Ying Yong Sheng tai xue bao = the. J Appl Ecol 18:554–558

    CAS  Google Scholar 

  • Yuan S, Wang L, Wu K, Yuan S, Wang L, Wu K, Shi J, Wang M, Yang X, Shen Q, Shen B (2014) Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Appl Soil Ecol 75:86–94

    Article  Google Scholar 

  • Zelenev VV, Van Bruggen AHC, Leffelaar PA, Zelenev VV, van Bruggen AHC, Leffelaar PA, Bloem J, Semenov AM (2006) Oscillating dynamics of bacterial populations and their predators in response to fresh organic matter added to soil: the simulation model ‘BACWAVE-WEB’. Soil Biol Biochem 38:1690–1711

    Article  CAS  Google Scholar 

  • Zhang S, Raza W, Yang X, Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, Liu X, Ran W, Shen Q (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol Fertil Soils 44:1073–1080

    Article  Google Scholar 

Download references

Acknowledgements

We thank Directors, ICAR-CIARI, Port Blair and ICAR-NBAIM for their kind support. This research was supported by grants from a mega-network project entitled Application of Microorganisms for Agriculture and Allied Sector (AMAAS) of ICAR-NBAIM, Mau, India through sub-project ‘Exploring Antimicrobial Peptide Genes in Developing Bioformulation for the Management of Plant Disease of Andaman and Nicobar Islands’.

Funding

This research was supported by grants from a mega-network project entitled Application of Microorganisms for Agriculture and Allied Sector (AMAAS) of ICAR-NBAIM, Mau, India through sub-project ‘Exploring Antimicrobial Peptide Genes in Developing Bioformulation for the Management of Plant Disease of Andaman and Nicobar Islands’.

Author information

Authors and Affiliations

Authors

Contributions

KS, KM, AB performed the lab, pot culture studies and analyzed the data; PK supervised field experiments and RKG, AK, SKS supervised the overall work, drafted, and edited the manuscript.

Corresponding author

Correspondence to K. Sakthivel.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Didier Lesueur.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivel, K., Manigundan, K., Gautam, R.K. et al. Microbe-enriched farm yard manure (MFYM) approach for the suppression of Ralstonia solanacearum Yabuuchi (Smith) inciting bacterial wilt disease in eggplant (Solanum melongena L.). Plant Soil 491, 303–315 (2023). https://doi.org/10.1007/s11104-023-06119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-06119-y

Keywords

Navigation