Skip to main content

Advertisement

Log in

Crop microbiome responses to pathogen colonisation regulate the host plant defence

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Soil-borne pathogens severely damage the yield and quality of crops worldwide. Plant and soil microbiomes (e.g. in the rhizosphere) intimately interact with the plant, the pathogen and influence outcomes of disease infection. Investigation of how these microbiomes respond to disease infection is critical to develop solutions to control diseases.

Methods

Here, we conducted a field experiment and collected healthy and crown rot disease infected (caused by Fusarium pseudograminearum, Fp) wheat plants. We investigated their microbiomes in different compartments, plant immune responses and interactions with the pathogen (Fp) aiming at advancing our knowledge on microbiome-mediated regulation of plant responses to pathogens.

Results

We found that Fp colonised wheat plants significantly in terms of relative abundances, accounting for 11.3% and 60.7% of the fungal communities in the rhizosphere and roots, respectively. However, Fp presented with a small fraction of the leaf microbiome, up to 1.2%. Furthermore, Fp-infection led to significant changes in the composition of microbiomes in the rhizosphere and root while had little impact on leaves. We further found that wheat defence signalling pathways, microbiomes and the pathogen intimately correlated with each other in structural equation modelling. As such, we also identified ecological clusters explained changes in the wheat defence signalling pathways. Lastly, microbial co-occurrence network complexity was higher in Fp-infected plants relative to healthy plants, suggesting that Fp-infection may have led to changes in the wheat microbial community structure.

Conclusions

We provide novel evidence that soil-borne diseases disrupt belowground plant microbiomes influencing the responses of plant immunity to pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The 16S rRNA and ITS gene amplicon sequences associated with this study have been deposited in the NCBI SRA under accession: PRJNA436828.

References

  • Agrios, G.N. (1969) CHAPTER 1 - Introduction. In Plant Pathol. Agrios, G.N. (ed): Academic Press, pp. 1-14

  • Alahmad S, Simpfendorfer S, Bentley AR, Hickey LT (2018) Crown rot of wheat in Australia: fusarium pseudograminearum taxonomy, population biology and disease management. Australas Plant Pathol 47:285–299

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In Third international AAAI conference on weblogs and social media

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, De Hollander M, Ruiz-Buck D et al (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366:606–612

    Article  PubMed  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Tyson GW, Vivanco JM, Schenk PM (2013) Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS One 8:e56457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Chapelle E, Mendes R, Bakker PAHM, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z (2018) Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 9:3429

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong J, Liu P, Zhou G, Xia J (2020) Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc 15:799–821

    Article  CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D et al (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:1–8

    Article  Google Scholar 

  • Delgado-Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A et al (2018) Ecological drivers of soil microbial diversity and soil biological networks in the southern hemisphere. Ecology 99:583–596

    Article  PubMed  Google Scholar 

  • Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang J-T, Eisenhauer N et al (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Chang 10:550–554

    Article  Google Scholar 

  • Dewick PM (1995) The biosynthesis of shikimate metabolites. Nat Prod Rep 12:101–133

    Article  CAS  Google Scholar 

  • Dini-Andreote F (2020) Endophytes: the second layer of plant defense. Trends Plant Sci 25:319–322

    Article  CAS  PubMed  Google Scholar 

  • Dudenhöffer J-H, Scheu S, Jousset A (2016) Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J Ecol 104:1566–1575

    Article  Google Scholar 

  • Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S (2018) Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973–983. e914

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J 4:642–647

    Article  CAS  PubMed  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:e1002687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginnan NA, Dang T, Bodaghi S, Ruegger PM, McCollum G, England G et al (2020) Disease-induced microbial shifts in citrus indicate microbiome-derived responses to Huanglongbing across the disease severity spectrum. Phytobiomes J 4:375–387

    Article  Google Scholar 

  • Grote U, Fasse A, Nguyen TT, Erenstein O (2021) Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front Sustain Food Syst 4

  • Hagerty CH, Irvine T, Rivedal HM, Yin C, Kroese DR (2021) Diagnostic guide: fusarium crown rot of winter wheat. Plant Health Progress 22:176–181

    Article  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman Michele T, Arnold AE (2010) Diverse Bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg A, Johnston R, Dyer A (2007) Applying real-time quantitative PCR to fusarium crown rot of wheat. Plant Dis 91:1021–1028

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Yuan X, Yang J, Yang Y, Jv H, Li R et al (2023) Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana fusarium wilt disease. New Phytol. https://doi.org/10.1111/nph.18816

  • Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S et al (2014) Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun 5:1–7

    Article  Google Scholar 

  • Hu Q, Tan L, Gu S, Xiao Y, Xiong X, Zeng W-A et al (2020) Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. npj Biofilms Microbiomes 6:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J et al (2012) New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82:666–677

    Article  CAS  PubMed  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (2012) PCR protocols: a guide to methods and applications. Academic press, Cambridge

    Google Scholar 

  • Kassambara A (2018) Ggpubr:“ggplot2” based publication ready plots. R package version 01:7

    Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Brettell LE (2019) Plant defense by VOC-induced microbial priming. Trends Plant Sci 24:187–189

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, He F (2019) Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Funct Ecol 33:1211–1222

    Article  Google Scholar 

  • Liu H, Carvalhais LC, Kazan K, Schenk PM (2016a) Development of marker genes for jasmonic acid signaling in shoots and roots of wheat. Plant Signal Behav 11:e1176654–e1176654

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Carvalhais LC, Rincon-Florez V, Crawford M, Dang YP, Dennis PG, Schenk PM (2016b) One-time strategic tillage does not cause major impacts on soil microbial properties in a no-till Calcisol. Soil Till Res 158:91–99

    Article  Google Scholar 

  • Liu H, Carvalhais LC, Crawford M, Singh E, Dennis PG, Pieterse CM, Schenk PM (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Brettell LE, Singh B (2020a) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:841–844

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Brettell LE, Qiu Z, Singh BK (2020b) Microbiome-mediated stress resistance in plants. Trends Plant Sci 25:733–743

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li J, Carvalhais LC, Percy CD, Prakash Verma J, Schenk PM, Singh BK (2021) Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens. New Phytol 229:2873–2885

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z et al (2018) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Melloy P, Hollaway G, Luck J, Norton R, Aitken E, Chakraborty S (2010) Production and fitness of fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Glob Change Biol 16:3363–3373

    Article  Google Scholar 

  • Miedaner T, Cumagun C, Chakraborty S (2008) Population genetics of three important head blight pathogens fusarium graminearum, F. pseudograminearum and F. culmorum. J Phytopathol 156:129–139

    Article  Google Scholar 

  • Newman E (1985) The rhizosphere: carbon sources and microbial populations. Ecological interactions in soil: plants, microbes and animals:107–121

  • Nouwen N, Arrighi J-F, Gully D, Giraud E (2021) RibBX of Bradyrhizobium ORS285 plays an important role in intracellular persistence in various aeschynomene host plants. Mol Plant-Microbe Interact 34:88–99

    Article  CAS  PubMed  Google Scholar 

  • Obanor F, Neate S, Simpfendorfer S, Sabburg R, Wilson P, Chakraborty S (2013) Fusarium graminearum and fusarium pseudograminearum caused the 2010 head blight epidemics in Australia. Plant Pathol 62:79–91

    Article  CAS  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package Community ecology package 10:719

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Métraux JP, L'Haridon F (2016) The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210:1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Rojas EC, Jensen B, Jørgensen HJL, Latz MAC, Esteban P, Ding Y, Collinge DB (2020) Selection of fungal endophytes with biocontrol potential against fusarium head blight in wheat. Biol Control 144:104222

    Article  CAS  Google Scholar 

  • Romero R, Roberts M, Phillipson J (1995) Chorismate mutase in microorganisms and plants. Phytochemistry 40:1015–1025

    Article  CAS  Google Scholar 

  • Santos-Medellín C, Edwards J, Nguyen B, Sundaresan V (2022) Acquisition of a complex root microbiome reshapes the transcriptomes of rice plants. New Phytol 235:2008–2021

    Article  PubMed  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2007) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739

    Article  Google Scholar 

  • Teixeira PJPL, Colaianni NR, Law TF, Conway JM, Gilbert S, Li H et al (2021) Specific modulation of the root immune system by a community of commensal bacteria. Proc Natl Acad Sci U S A 118:e2100678118

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  PubMed  Google Scholar 

  • Watts SC, Ritchie SC, Inouye M, Holt KE (2019) FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35:1064–1066

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth G, McNamara R (1994) Testing wheat seedlings for resistance to crown rot caused by fusarium graminearum group 1. Plant Dis

  • Xiong C, Singh BK, He J-Z, Han Y-L, Li P-P, Wan L-H et al (2021) Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Zhao J, Wen T, Zhao M, Li R, Goossens P et al (2018) Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6:1–12

    Article  Google Scholar 

  • Zhou X, Wang J, Liu F, Liang J, Zhao P, Tsui CK et al (2022) Cross-kingdom synthetic microbiota supports tomato suppression of fusarium wilt disease. Nat Commun 13:7890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.L., J.L. and B.S. conceptualized the idea; H.L., J.W., M.D.B., and H.Z. analysed the data; HL did the writing with all authors having critically revised the manuscript.

Corresponding authors

Correspondence to Hongwei Liu or Brajesh K. Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Luz E. Bashan.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 790 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, J., Delgado-Baquerizo, M. et al. Crop microbiome responses to pathogen colonisation regulate the host plant defence. Plant Soil 488, 393–410 (2023). https://doi.org/10.1007/s11104-023-05981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-023-05981-0

Keywords

Navigation