Skip to main content
Log in

Effects of transforming multiple ecosystem types to plantations on soil carbon, nitrogen, and phosphorus concentrations at the global scale

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

To provide useful knowledges for plantation management, we assessed how the transforming of the different ecosystem types to tree plantation may affect soil carbon (C), nitrogen (N), and phosphorus (P) concentrations and what are the driving factors of ecosystem transformation effects.

Methods

We synthesized 4262 pairwise observations collected from 366 peer-reviewed publications using meta-analysis method to assess the effects of ecosystem transformation to plantation on soil C, N, and P concentrations.

Results

We found that (1) ecosystem transformation effects on soil C, N, and P concentrations significantly varied with former ecosystem types, with positive effects of transforming croplands, deserts, and grasslands to plantations on total C (TC), soil organic C (SOC), dissolved organic C (DOC), total N (TN), and/or available N (AN), but negative effects of transforming primary and secondary forests to plantations on TC, SOC, TN, AN, and/or available P (AP); (2) the concentrations of soil dissolved organic N (DON), ammonium (NH4+), and nitrate (NO3) were not affected by ecosystem transformation regardless of the former ecosystem types; and (3) ecosystem transformation effects were impacted by a variety of moderator variables, with climate, mycorrhizal association, stand age, and soil moisture and pH the most important ones.

Conclusion

Transforming croplands, deserts, and grasslands to plantations will increase soil C, N, and/or P concentrations, but transforming primary and secondary forests to plantations had opposite effects. Our results help to better understand ecosystem transformation effects on soil C and nutrient concentrations, and will be useful for guiding afforestation and sustainable plantation managements under global environment change scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw data used in the study were deposited in figshare with a DOI (https://doi.org/10.6084/m9.figshare.20402754.v1).

References

  • Ahmed IU, Mengistie HK, Godbold DL, Sandén H (2019) Soil moisture integrates the influence of land-use and season on soil microbial community composition in the Ethiopian highlands. Appl Soil Ecol 135:85–90. https://doi.org/10.1016/j.apsoil.2018.11.010

    Article  Google Scholar 

  • Bárcena TG, Kiær LP, Vesterdal L, Stefánsdóttir HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Change Biol 20:2393–2405. https://doi.org/10.1111/gcb.12576

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Google Scholar 

  • Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29

    Article  Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19:988–995. https://doi.org/10.1111/gcb.12113

    Article  Google Scholar 

  • Dawoe EK, Quashie-Sam JS, Oppong SK (2014) Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agrofor Syst 88:87–99. https://doi.org/10.1007/s10457-013-9658-1

    Article  Google Scholar 

  • Deng L, Gb L, Zp S (2014) Land-use conversion and changing soil carbon stocks in C hina’s ‘Grain-for-Green’Program: a synthesis. Glob Change Biol 20:3544–3556

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18:1781–1796. https://doi.org/10.1111/j.1365-2486.2012.02665.x

    Article  Google Scholar 

  • FAO (2020) Global Forest Resources Assessment 2020: Main report, Rome

  • Fasinmirin JT, Olorunfemi IE, Olakuleyin F (2018) Strength and hydraulics characteristics variations within a tropical Alfisol in Southwestern Nigeria under different land use management. Soil Tillage Res 182:45–56. https://doi.org/10.1016/j.still.2018.04.017

    Article  Google Scholar 

  • Feng Y, Schmid B, Loreau M, Forrester DI, Fei S, Zhu J, Tang Z, Zhu J, Hong P, Ji C, Shi Y, Su H, Xiong X, Xiao J, Wang S, Fang J (2022) Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376:865–868. https://doi.org/10.1126/science.abm6363

    Article  CAS  Google Scholar 

  • Guillaume T, Maranguit D, Murtilaksono K, Kuzyakov Y (2016) Sensitivity and resistance of soil fertility indicators to land-use changes: New concept and examples from conversion of Indonesian rainforest to plantations. Ecol Ind 67:49–57. https://doi.org/10.1016/j.ecolind.2016.02.039

    Article  CAS  Google Scholar 

  • Guo J, Wang B, Wang G, Myo STZ, Cao F (2020) Effects of three cropland afforestation practices on the vertical distribution of soil organic carbon pools and nutrients in eastern China. Glob Ecol Conserv 22:e00913

    Article  Google Scholar 

  • Haghverdi K, Kooch Y (2020) Long-term afforestation effect and help to optimize degraded forest lands and reducing climate changes. Ecol Eng 142:105656

    Article  Google Scholar 

  • Harley JL, Harley E (1987) A check-list of mycorrhiza in the British flora. New Phytol 105:1–102

    Article  Google Scholar 

  • Hedges L, Gurevitch J, Curtis P (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156. https://doi.org/10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2

    Article  Google Scholar 

  • Hou G, Delang CO, Lu X, Gao L (2019) Soil organic carbon storage varies with stand ages and soil depths following afforestation. Ann for Res 62:3–20

    Google Scholar 

  • Hou L, Zhang Y, Li Z, Shao G, Song L, Sun Q (2021) Comparison of soil properties, understory vegetation species diversities and soil microbial diversities between chinese fir plantation and close-to-natural forest. Forests 12:632. https://doi.org/10.3390/f12050632

    Article  Google Scholar 

  • Jeddi K, Chaieb M (2010) Soil properties and plant community in different aged Pinus halepensis Mill. plantations in arid Mediterranean areas: The case of southern Tunisia. Land Degrad Dev 21:32–39. https://doi.org/10.1002/ldr.964

    Article  Google Scholar 

  • Koricheva J, Gurevitch J, Mengersen K (2013) Handbook of meta-analysis in ecology and evolution. Princeton University Press, Princeton and Oxford

    Book  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069

    Article  CAS  Google Scholar 

  • Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS (2020) Persistence of soil organic carbon caused by functional complexity. Nat Geosci 13:529–534

    Article  CAS  Google Scholar 

  • Li Y, Han C, Sun S, Zhao C (2021) Effects of tree species and soil enzyme activities on soil nutrients in Dryland plantations. Forests 12:e1153. https://doi.org/10.3390/f12091153

    Article  Google Scholar 

  • Liao C, Luo Y, Fang C, Chen J, Li B (2012) The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta-analysis. Glob Ecol Biogeogr 21:318–327. https://doi.org/10.1111/j.1466-8238.2011.00690.x

    Article  Google Scholar 

  • Lin D, Xia J, Wan S (2010) Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytol 188:187–198. https://doi.org/10.1111/j.1469-8137.2010.03347.x

    Article  Google Scholar 

  • Liu CLC, Kuchma O, Krutovsky KV (2018) Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob Ecol Conserv 15:e00419

    Article  Google Scholar 

  • Liu X, Dou L, Ding X, Sun T, Zhang H (2021) Influences of different afforestation systems on the soil properties of limestone mountains in the mid-eastern region of China. CATENA 201:e105198. https://doi.org/10.1016/j.catena.2021.105198

    Article  CAS  Google Scholar 

  • Nakagawa S, Santos ES (2012) Methodological issues and advances in biological meta-analysis. Evol Ecol 26:1253–1274

    Article  Google Scholar 

  • Nave L, Swanston C, Mishra U, Nadelhoffer KJ (2013) Afforestation effects on soil carbon storage in the United States: a synthesis. Soil Sci Soc Am J 77:1035–1047

    Article  CAS  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manage 168:241–257. https://doi.org/10.1016/S0378-1127(01)00740-X

    Article  Google Scholar 

  • Peichl M, Leava NA, Kiely G (2012) Above-and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland. Plant Soil 350:281–296

    Article  CAS  Google Scholar 

  • Peng Y, Schmidt IK, Zheng H, Heděnec P, Bachega LR, Yue K, Wu F, Vesterdal L (2020) Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale. For Ecol Manage 478:118510

    Article  Google Scholar 

  • Peng Y, Holmstrup M, Schmidt IK, De Schrijver A, Schelfhout S, Heděnec P, Zheng H, Bachega LR, Yue K, Vesterdal L (2022a) Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma 407:115570

    Article  CAS  Google Scholar 

  • Peng Y, Yuan J, Heděnec P, Yue K, Ni X, Li W, Wang D, Yuan C, Tan S, Wu F (2022b) Mycorrhizal association and life form dominantly control plant litter lignocellulose concentration at the global scale. Front Plant Sci 13:926941. https://doi.org/10.3389/fpls.2022.926941

    Article  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51. https://doi.org/10.1111/nph.12221

    Article  CAS  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. https://doi.org/10.1038/nature10386

    Article  CAS  Google Scholar 

  • Segura C, Navarro FB, Jiménez MN, Fernández-Ondoño E (2020) Implications of afforestation vs. secondary succession for soil properties under a semiarid climate. Sci Total Environ 704:135393. https://doi.org/10.1016/j.scitotenv.2019.135393

    Article  CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241:155–176. https://doi.org/10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Song Y, Yao Y, Qin X, Wei X, Jia X, Shao M (2020) Response of carbon and nitrogen to afforestation from 0 to 5 m depth on two semiarid cropland soils with contrasting inorganic carbon concentrations. Geoderma 357:e113940. https://doi.org/10.1016/j.geoderma.2019.113940

    Article  CAS  Google Scholar 

  • Soudzilovskaia NA, Vaessen S, Barcelo M, He J, Rahimlou S, Abarenkov K, Brundrett MC, Gomes SIF, Merckx V, Tedersoo L (2020) FungalRoot: global online database of plant mycorrhizal associations. New Phytol 227:955–966. https://doi.org/10.1111/nph.16569

    Article  Google Scholar 

  • Sun Y, Luo C, Jiang L, Song M, Zhang D, Li J, Li Y, Ostle NJ, Zhang G (2020) Land-use changes alter soil bacterial composition and diversity in tropical forest soil in China. Sci Total Environ 712:e136526. https://doi.org/10.1016/j.scitotenv.2020.136526

    Article  CAS  Google Scholar 

  • Tonon G, Sohi S, Francioso O, Ferrari E, Montecchio D, Gioacchini P, Ciavatta C, Panzacchi P, Powlson D (2010) Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. Eur J Soil Sci 61:970–979. https://doi.org/10.1111/j.1365-2389.2010.01310.x

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    Article  CAS  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • Wang Y, Chen L, Xiang W, Ouyang S, Zhang T, Zhang X, Zeng Y, Hu Y, Luo G, Kuzyakov Y (2021) Forest conversion to plantations: A meta-analysis of consequences for soil and microbial properties and functions. Glob Change Biol 27:5643–5656. https://doi.org/10.1111/gcb.15835

    Article  CAS  Google Scholar 

  • Wang L, Zhou X, Wen Y, Sun D (2022) Non-additive effects of mixing eucalyptus and castanopsis hystrix trees on carbon stocks under an eco-silviculture regime in Southern China. Forests 13:733. https://doi.org/10.3390/f13050733

    Article  Google Scholar 

  • Wooliver R, Pellegrini AFA, Waring B, Houlton BZ, Averill C, Schimel J, Hedin LO, Bailey JK, Schweitzer JA (2019) Changing perspectives on terrestrial nitrogen cycling: The importance of weathering and evolved resource-use traits for understanding ecosystem responses to global change. Funct Ecol 33:1818–1829. https://doi.org/10.1111/1365-2435.13377

    Article  Google Scholar 

  • Wu W, Kuang L, Li Y, He L, Mou Z, Wang F, Zhang J, Wang J, Za Li, Lambers H (2021) Faster recovery of soil biodiversity in native species mixture than in Eucalyptus monoculture after 60 years afforestation in tropical degraded coastal terraces. Glob Change Biol 27:5329–5340. https://doi.org/10.1111/gcb.15774

    Article  CAS  Google Scholar 

  • Xiang Y, Liu Y, Yue X, Yao B, Zhang L, He J, Luo Y, Xu X, Zong J (2021) Factors controlling soil organic carbon and total nitrogen stocks following afforestation with Robinia pseudoacacia on cropland across China. For Ecol Manage 494:119274

    Article  Google Scholar 

  • Xiang Y, Li Y, Luo X, Liu Y, Huang P, Yao B, Zhang L, Li W, Xue J, Gao H (2022) Mixed plantations enhance more soil organic carbon stocks than monocultures across China: Implication for optimizing afforestation/reforestation strategies. Sci Total Environ 821:153449

    Article  CAS  Google Scholar 

  • Xie Y, Yang L, Zhu T-B, Yang H, Zhang J, Yang J, Cao J, Bai B, Jiang Z, Liang Y, Lan F, Meng L, Müller C (2018) Rapid recovery of nitrogen retention capacity in a subtropical acidic soil following afforestation. Soil Biol Biochem 120:171–180. https://doi.org/10.1016/j.soilbio.2018.02.008

    Article  CAS  Google Scholar 

  • Yang Y, Liu B (2019) Effects of planting Caragana shrubs on soil nutrients and stoichiometries in desert steppe of Northwest China. CATENA 183:e104213. https://doi.org/10.1016/j.catena.2019.104213

    Article  CAS  Google Scholar 

  • Yang S, Feng C, Ma Y, Wang W, Huang C, Qi C, Fu S, Chen HY (2021) Transition from N to P limited soil nutrients over time since restoration in degraded subtropical broadleaved mixed forests. For Ecol Manage 494:e119298. https://doi.org/10.1016/j.foreco.2021.119298

    Article  Google Scholar 

  • Yue K, De Frenne P, Fornara DA, Van Meerbeek K, Li W, Peng X, Ni X, Peng Y, Wu F, Yang Y (2021) Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob Change Biol 27:3350–3357

    Article  Google Scholar 

  • Zeng H, Wu J, Zhu X, Singh AK, Chunfeng C, Liu W (2021) Jungle rubber facilitates the restoration of degraded soil of an existing rubber plantation. J Environ Manage 281:e111959. https://doi.org/10.1016/j.jenvman.2021.111959

    Article  CAS  Google Scholar 

  • Zhang Y, Wei L, Wei X, Liu X, Shao M (2018) Long-term afforestation significantly improves the fertility of abandoned farmland along a soil clay gradient on the Chinese Loess Plateau. Land Degrad Dev 29:3521–3534. https://doi.org/10.1002/ldr.3126

    Article  Google Scholar 

  • Zhang W, Liu W, Xu M, Deng J, Han X, Yang G, Feng Y, Ren G (2019) Response of forest growth to C:N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 337:280–289. https://doi.org/10.1016/j.geoderma.2018.09.042

    Article  CAS  Google Scholar 

  • Zhang Y, Liao X, Wang Z, Wei X, Jia X, Shao M (2020) Synchronous sequestration of organic carbon and nitrogen in mineral soils after conversion agricultural land to forest. Agr Ecosyst Environ 295:e106866. https://doi.org/10.1016/j.agee.2020.106866

    Article  CAS  Google Scholar 

  • Zheng H, Ouyang Z, Xu W, Wang X, Miao H, Li X, Tian Y (2008) Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. For Ecol Manage 255:1113–1121. https://doi.org/10.1016/j.foreco.2007.10.015

    Article  Google Scholar 

  • Zhou Z, Wang C, Jin Y (2017) Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils. Biol Fertil Soils 53:397–406. https://doi.org/10.1007/s00374-017-1188-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to than the anonymous reviewers for their insightful comments and useful suggestions that substantially improve the quality of our article. K.Y. was funded by the National Natural Science Foundation of China (31922052), and F.W. received funds from the National Natural Science Foundation of China (32171641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Peng.

Ethics declarations

Conflicts of interest

The authors declared no conflicts of interests.

Additional information

Responsible Editor: Timothy J. Fahey.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 332 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Yuan, C., Heděnec, P. et al. Effects of transforming multiple ecosystem types to plantations on soil carbon, nitrogen, and phosphorus concentrations at the global scale. Plant Soil 481, 213–227 (2022). https://doi.org/10.1007/s11104-022-05632-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05632-w

Keywords

Navigation