Skip to main content
Log in

Local domestication of soybean leads to strong root selection and diverse filtration of root-associated bacterial communities

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

The root-associated microbiota is essential to plant health, fitness and productivity, but the effect of plant domestication on the ecological process of microbial community assembly is unclear.

Methods

High-throughput sequencing of the 16S rRNA genes was employed to investigated the the diversity, ecological assembly process and cooccurrence relationship of the bacterial communities of multiple root compartment niches (root zone, rhizosphere, and root endosphere) between wild and landrace accessions grown in three soil types.

Results

Our results showed that the domestication effect on bacterial community increased from the root zone to the rhizosphere and endosphere, while the soil type effect decreased. Compared with wild soybean, the root endosphere bacterial community of the landraces was more sensitive to soil environmental change. The deterministic process dominated the assembly of the bacterial community in the rhizosphere and root endosphere, and its relative contribution was higher in the landraces than in wild soybeans. In the two root compartments, the increased root system selection pressure in the landraces was indicated by a greater loss of bacteria at the same taxon level and lower bacterial diversity. Furthermore, the family Oxalobacteraceae and the class Actinobacteria were identified as important root-associated biomarker taxa for wild soybeans, while Enterobacteriaceae was such for the landraces.

Conclusions

Our findings provide crucial empirical evidence for the host selection and enrichment process of the microbial community under local domestication and are of great significance in understanding the coevolution of hosts and microbiota, which will aid in manipulating microbiota for future crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The obtained raw data have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database (Accession No.: PRJNA806450).

References

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. Plos Biol 14:e1002352

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Pérez JM, González-García S, Cobos R, Olego MÁ, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR, Master ER (2017) Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl Environ Microb 83:e1517–e1564

    Article  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    Article  PubMed  CAS  Google Scholar 

  • Barbosa Lima A, Cannavan FS, Navarrete AA, Teixeira WG, Kuramae EE, Tsai SM (2015) Amazonian dark earth and plant species from the amazon region contribute to shape rhizosphere bacterial communities. Microb Ecol 69:855–866

    Article  PubMed  CAS  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: An open source software for exploring and manipulating networks. In In International AAAI conference on weblogs and social media: San Jose, California

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Farmer JJ III (2015) Enterobacteriaceae. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, pp 1–24. https://doi.org/10.1002/9781118960608.fbm00222

  • Brown SP, Grillo MA, Podowski JC, Heath KD (2020) Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome 8:1–17

    Article  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carter TE, Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean. Soybeans: Improvement, Production, and Uses 16:303–416

  • Chen L, Xin X, Zhang J, Redmile-Gordon M, Nie G (2017) Soil characteristics overwhelm cultivar effects on the structure and assembly of root-associated microbiomes of modern maize. Pedosphere 29:360–373

    Article  Google Scholar 

  • DeHaan L, Larson S, López-Marqués RL, Wenkel S, Gao C, Palmgren M (2020) Roadmap for accelerated domestication of an emerging perennial grain crop. Trends Plant Sci 25:525–537

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-Gonzalez A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann AB, Küting M, Jünemann S, Jaenicke S, Schlüter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. Isme J 7:37–49

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  PubMed  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  PubMed  CAS  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA 112:E911–E920

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y, Chu H (2019) Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. Plos Comput Biol 8:e1002606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Germida J, Siciliano S (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fert Soils 33:410–415

    Article  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim MY, Van K, Kang YJ, Kim KH, Lee S (2012) Tracing soybean domestication history: From nucleotide to genome. Breeding Sci 61:445–452

    Article  CAS  Google Scholar 

  • Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koop-Jakobsen K, Giblin AE (2010) The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments. Limnol Oceanogr 55:789–802

    Article  CAS  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina Del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  PubMed  CAS  Google Scholar 

  • Leff JW, Lynch RC, Kane NC, Fierer N (2017) Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol 214:412–423

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Bork P (2019) Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res 47:W256–W259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, Lin F, Luan W, Chen P, Yan Z, Guan Y, Zhu L, Ning X, Smulders MJM, Li W, Piao R, Cui Y, Yu Z, Guan M, Chang R, Hou A, Shi A, Zhang B, Zhu S, Qiu L (2008) Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet 117:857–871

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Zhuang X, Yu Z, Wang Z, Wang Y, Guo X, Xiang W, Huang S (2019a) Community structures and antifungal activity of root-associated endophytic actinobacteria of healthy and diseased soybean. Microorganisms 7:243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME (2019b) Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. Bmc Microbiol 19:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou G, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020) Pan-Genome of wild and cultivated soybeans. Cell 182:162–176

    Article  PubMed  CAS  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Luo X, Qian H, Wang L, Han S, Wen S, Wang B, Huang Q, Chen W (2020) Fertilizer types shaped the microbial guilds driving the dissimilatory nitrate reduction to ammonia process in a Ferralic Cambisol. Soil Biol Biochem 141:107677

    Article  CAS  Google Scholar 

  • Mago T, Salzberg SL (2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  Google Scholar 

  • Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N, Martínez-Romero J, Zuñiga-Dávila D (2020) Plant microbiota modified by plant domestication. Syst Appl Microbiol 43:126106

    Article  PubMed  Google Scholar 

  • Martín-Robles N, García-Palacios P, Rodríguez M, Rico D, Vigo R, Sánchez-Moreno S, De Deyn GB, Milla R (2020) Crops and their wild progenitors recruit beneficial and detrimental soil biota in opposing ways. Plant Soil 456:159–173

    Article  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  PubMed  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. Fems Microbiol Rev 37:634–663

    Article  PubMed  CAS  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: Genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  PubMed  CAS  Google Scholar 

  • Murphy KM, Edwards J, Louie KB, Bowen BP, Sundaresan V, Northen TR, Zerbe P (2021) Bioactive diterpenoids impact the composition of the root-associated microbiome in maize (Zea mays). Sci Rep-Uk 11:333

    Article  CAS  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package. Community Ecol Packag 10:719

    Google Scholar 

  • Pagnoux C, Bouby L, Valamoti SM, Bonhomme V, Ivorra S, Gkatzogia E, Karathanou A, Kotsachristou D, Kroll H, Terral J (2021) Local domestication or diffusion? Insights into viticulture in Greece from Neolithic to Archaic times, using geometric morphometric analyses of archaeological grape seeds. J Archaeol Sci 125:105263

    Article  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90:635–644

    Article  PubMed  Google Scholar 

  • Pérez-Jaramillo JE, Carrión VJ, de Hollander M, Raaijmakers JM (2018) The wild side of plant microbiomes. Microbiome 6:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez-Jaramillo JE, de Hollander M, Ramírez CA, Mendes R, Raaijmakers JM, Carrión VJ (2019) Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez-Jaramillo JE, Carrion VJ, Bosse M, Ferrao L, de Hollander M, Garcia A, Ramirez CA, Mendes R, Raaijmakers JM (2017) Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. Isme J 11:2244–2257

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Blanco A, Sicardi M, Frioni L (2015) Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.). Biol Fert Soils 51:391–402

    Article  Google Scholar 

  • Rüger L, Feng K, Dumack K, Freudenthal J, Chen Y, Sun R, Wilson M, Yu P, Sun B, Deng Y (2021) Assembly patterns of the rhizosphere microbiome along the longitudinal root axis of maize (Zea mays L.). Front Microbiol 12:237

    Article  Google Scholar 

  • Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G (2021) Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371:d695

    Article  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18

    Article  Google Scholar 

  • Shenton M, Iwamoto C, Kurata N, Ikeo K (2016) Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition. Rice 9:1–11

    Article  Google Scholar 

  • Shi S, Tian L, Nasir F, Li X, Li W, Tran LP, Tian C (2018) Impact of domestication on the evolution of rhizomicrobiome of rice in response to the presence of Magnaporthe oryzae. Plant Physiol Bioch 132:156–165

    Article  CAS  Google Scholar 

  • Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger TE (2019) Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Env Microbiol Rep 11:185–195

    Article  CAS  Google Scholar 

  • Singh DP, Patil HJ, Prabha R, Yandigeri MS, Siddegowda RP (2018) Actinomycetes as potential plant growth-promoting microbial communities. Crop Improv Microb Biotechnol 2018:27–38

    Google Scholar 

  • Soldan R, Fusi M, Cardinale M, Daffonchio D, Preston GM (2021) The effect of plant domestication on host control of the microbiota. Commun Biol 4:936

    Article  PubMed  PubMed Central  Google Scholar 

  • Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. Isme J 7:2069–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein JC, Yu Y, Copetti D, Zwickl DJ, Zhang L, Zhang C, Chougule K, Gao D, Iwata A, Goicoechea JL, Wei S, Wang J, Liao Y, Wang M, Jacquemin J, Becker C, Kudrna D, Zhang J, Londono CEM, Song X, Lee S, Sanchez P, Zuccolo A, Ammiraju JSS, Talag J, Danowitz A, Rivera LF, Gschwend AR, Noutsos C, Wu C, Kao S, Zeng J, Wei F, Zhao Q, Feng Q, El Baidouri M, Carpentier M, Lasserre E, Cooke R, Rosa Farias DD, Da Maia LC, Dos Santos RS, Nyberg KG, McNally KL, Mauleon R, Alexandrov N, Schmutz J, Flowers D, Fan C, Weigel D, Jena KK, Wicker T, Chen M, Han B, Henry R, Hsing YC, Kurata N, de Oliveira AC, Panaud O, Jackson SA, Machado CA, Sanderson MJ, Long M, Ware D, Wing RA (2018) Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50:285–296

    Article  PubMed  CAS  Google Scholar 

  • Stopnisek N, Shade A (2021) Persistent microbiome members in the common bean rhizosphere: An integrated analysis of space, time, and plant genotype. Isme J 15:2708–2722

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugawara M, Umehara Y, Kaga A, Hayashi M, Minamisawa K (2019) Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLoS One 14:e222469

    Article  Google Scholar 

  • Tian L, Shi S, Ma L, Nasir F, Li X, Tran LP, Tian C (2018a) Co-evolutionary associations between root-associated microbiomes and root transcriptomes in wild and cultivated rice varieties. Plant Physiol Bioch 128:134–141

    Article  CAS  Google Scholar 

  • Tian L, Shi S, Nasir F, Chang C, Li W, Tran LP, Tian C (2018b) Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. Rice 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant-microbiome interactions: From community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  PubMed  CAS  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Veach AM, Morris R, Yip DZ, Yang ZK, Engle NL, Cregger MA, Tschaplinski TJ, Schadt CW (2019) Rhizosphere microbiomes diverge among Populus trichocarpa plant-host genotypes and chemotypes, but it depends on soil origin. Microbiome 7:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner MR (2021) Prioritizing host phenotype to understand microbiome heritability in plants. New Phytol 232:502–509

    Article  PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wemheuer F, Taylor JA, Daniel R, Johnston EL, Wemheuer B (2020) Tax4Fun2: Prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ Microbiome 15:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y, Wang E, Wei G (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26:1641–1651

    Article  PubMed  CAS  Google Scholar 

  • Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ (2021) Host selection shapes crop microbiome assembly and network complexity. New Phytol 229:1091–1104

    Article  PubMed  CAS  Google Scholar 

  • Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey FP, Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X, Hochholdinger F (2021) Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants 7:481–499

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Xu T, Mao L, Yan S, Chen X, Wu Z, Chen R, Luo X, Xie J, Gao S (2016) Genome-wide analysis of Dongxiang wild rice (Oryza rufipogon Griff.) to investigate lost/acquired genes during rice domestication. Bmc Plant Biol 16:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Xu J, Riera N, Jin T, Li J, Wang N (2017) Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome. Microbiome 5:97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Y, Feng Z, Wang J, Huang X, Lei L, Zhang X, Cao H, Fan D, Yao M, Han D, Li X (2021) Wheat-root associated prokaryotic community: Interplay between plant selection and location. Plant Soil 464:183–197

    Article  CAS  Google Scholar 

  • Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Van Nostrand JD, Yang Y, He Z, Wu L, Stahl DA, Hazen TC, Tiedje JM, Arkin AP (2014) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci USA 111:E836–E845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31870476, 42177106 and 41830755). We gratefully acknowledge the help of all the members from different authoritative institutions for collecting soybean seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Hans Lambers.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary file1

(DOCX 7.87 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, W., Wang, J., Li, Y. et al. Local domestication of soybean leads to strong root selection and diverse filtration of root-associated bacterial communities. Plant Soil 480, 439–455 (2022). https://doi.org/10.1007/s11104-022-05592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05592-1

Keywords

Navigation