Skip to main content

Advertisement

Log in

Grafting improves growth and nitrogen-use efficiency by enhancing NO3 uptake, photosynthesis, and gene expression of nitrate transporters and nitrogen metabolizing enzymes in watermelon under reduced nitrogen application

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Excessive application of N fertilizer can inhibit plant growth, reduce N-use efficiency (NUE) and lead to production reduction. Watermelon is an important crop that often restricted by inappropriate N supply. The study aims to test whether grafting with bottle gourd rootstock can improve the NUE and growth performance of watermelon under reduced nitrate application and to clarify the underlying mechanism.

Methods

Grafted (self-grafted and rootstock-grafted watermelon) and ungrafted (watermelon and bottle gourd) seedlings were treated separately with 9 mM (control) and 4 mM (reduced-nitrate) N concentrations for 18 days under hydroponic conditions.

Results

The growth and NUE of bottle gourd rootstock-grafted watermelon seedlings increased under reduced-nitrate, while decreased slightly in self-grafted seedlings compared with the control. Rootstock-grafted plants had higher root morphological traits, NO3 accumulation, NR and GS activities, photosynthesis, and NUE traits than self-grafted plants under reduced-nitrate. Reduced-nitrate treatment significantly up-regulated the expression of nitrate transporter genes NRT1.5 and NRT2.1 and N metabolizing enzyme genes NR2, NR3, NiR, GS1 and GS2 in rootstock-grafted plants.

Conclusion

Under reduced-nitrate treatment, grafted watermelon can make better use of the developed rootstock roots to increase the NO3 absorption and transportation to the shoot, so as to enhance the N metabolism potential and photosynthetic capacity of scions, and finally improve plant growth and NUE. The enhanced NO3 uptake and utilization of rootstock-grafted plants were regulated at the transcriptional level. Grafting with the bottle gourd rootstock may be beneficial to the efficient production of watermelon and economic application of N fertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

GOGAT:

Glutamate synthase

GS:

Glutamine synthetase

N:

Nitrogen

NA:

N accumulation

NiR:

Nitrite reductase

NR:

Nitrate reductase

NRTs:

Nitrate transporters

NUE:

N-use efficiency

NUpE:

N uptake efficiency

NUtE:

N utilization efficiency

References

  • Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Pérez-Alfocea F (2015) Unravelling rootstock × scion interactions to improve food security. J Exp Bot 66:2211–2226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allègre A, Silvestre J, Morard P, Kallerhoff J, Pinelli E (2004) Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia. J Exp Bot 55:2625–2634

    Article  PubMed  Google Scholar 

  • Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199

    Article  CAS  Google Scholar 

  • Bremner JM, Black CA, Evans DD, White IL, Ensminger LE, Clark FE (1965) Total nitrogen. Methods of soil analysis. American Society of Agronomy, Wisconsin, pp 1149–1178

    Google Scholar 

  • Bucher CA, Santos LA, de Matos NE, Rangel RP, de Souza SR, Fernandes MS (2014) The transcription of nitrate transporters in upland rice varieties with contrasting nitrate-uptake kinetics. J Plant Nutr Soil Sci 177:395–403

    Article  CAS  Google Scholar 

  • Chen ZC, Ma JF (2015) Improving nitrogen use efficiency in rice through enhancing root nitrate uptake mediated by a nitrate transporter, NRT1.1B. J Genet Genomics 42:463–465

    Article  PubMed  Google Scholar 

  • Chen HH, Jia YM, Xu H, Wang YW, Zhou Y, Huang ZR, Yang LT, Li Y, Chen LS, Guo JX (2020) Ammonium nutrition inhibits plant growth and nitrogen uptake in citrus seedlings. Sci Hortic 272:109526

    Article  CAS  Google Scholar 

  • Colla G, Rouphael Y, Mirabelli C, Cardarelli M (2011) Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen fertilization doses. J Plant Nutr Soil Sci 174:933–941

    Article  CAS  Google Scholar 

  • De Oliveira MMT, Lu SH, Zurgil U, Raveh E, Tel-Zur N (2021) Grafting in Hylocereus (Cactaceae) as a tool for strengthening tolerance to high temperature stress. Plant Physiol Biochem 160:94–105

    Article  Google Scholar 

  • Dordas C (2017) Nitrogen nutrition index and leaf chlorophyll concentration and its relationship with nitrogen use efficiency in barley (Hordeum vulgare L.). J Plant Nutr 40:1190–1203

    Article  CAS  Google Scholar 

  • Elliott GC, Läuchli A (1985) Phosphorus efficiency and phosphate-iron interaction in maize. Agron J 77:399–403

    Article  CAS  Google Scholar 

  • Fullana-Pericàs M, Conesa MÀ, Pérez-Alfocea F, Galmés J (2020) The influence of grafting on crops’ photosynthetic performance. Plant Sci 295:110250

    Article  PubMed  Google Scholar 

  • Garnett T, Plett D, Conn V, Conn S, Rabie H, Rafalski JA, Dhugga K, Tester MA, Kaiser BN (2015) Variation for N uptake system in maize: genotypic response to N supply. Front Plant Sci 6:936

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomes LDL, Ferreira ML, Kanashiro S, Tavares AR (2021) Nitrogen uptake by ornamental bromeliad: leaf and root efficiency. Plant Soil 466:293–302

    Article  CAS  Google Scholar 

  • Guo BJ, Li Y, Wang S, Li DF, Lv C, Xu RG (2020) Characterization of the nitrate transporter gene family and functional identification of HvNRT2.1 in barley (Hordeum vulgare L.). PLoS One 15:e0232056

  • Hassell RL, Memmott F, Liere DG (2008) Grafting methods for watermelon production. Hortic Sci 43:1677–1679

    Google Scholar 

  • He HY, Xie YY, Zhao AY, Hu WC, Guo X, Miller AJ, Wu XM, Chen BY, Zhang R, Tian H, Gao YJ (2021) Genotypic variation in nitrogen utilization efficiency in oilseed rape is related to the coordination of leaf senescence and root N uptake during reproductive stage. Plant Soil 463:291–306

    Article  CAS  Google Scholar 

  • Hirel B, Tetu T, Lea PJ, Dubois F (2011) Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3:1452–1485

    Article  CAS  Google Scholar 

  • Huang Y, Jiao YY, Nawaz MA, Chen C, Liu L, Lu Z, Kong QS, Cheng F, Bie ZL (2016) Improving magnesium uptake, photosynthesis and antioxidant enzyme activities of watermelon by grafting onto pumpkin rootstock under low magnesium. Plant Soil 409:229–246

    Article  CAS  Google Scholar 

  • Huang Y, Li J, Hua B, Liu ZX, Fan ML, Bie ZL (2013) Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Sci Hort 149:80–85

    Article  CAS  Google Scholar 

  • Hussain S, Iqbal N, Brestic M, Raza MA, Pang T, Langham DR, Safdar ME, Ahmed S, Wen BX, Gao Y, Liu WG, Yang WY (2019) Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ 658:626–637

    Article  PubMed  CAS  Google Scholar 

  • Iqbal A, Dong Q, Alamzeb M, Wang XR, Gui HP, Zhang HH, Pang NC, Zhang XL, Song MZ (2019) Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency. J Sci Food Agric 100:904–914

    Article  PubMed  Google Scholar 

  • Iqbal A, Dong Q, Wang Z, Wang XR, Gui HP, Zhang HH, Pang NC, Zhang XL, Song MZ (2020) Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiol Biochem 149:61–74

    Article  PubMed  CAS  Google Scholar 

  • Jacquot A, Chaput V, Mauries A, Li Z, Tillard P, Fizames C, Bonillo P, Bellegarde F, Laugier E, Santoni V, Hem S, Martin A, Gojon A, Schulze W, Lejay L (2020) NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana. New Phytol 228:1038–1054

    Article  PubMed  CAS  Google Scholar 

  • Jiang SY, Sun JY, Tian ZW, Hu H, Michel EJS, Gao JW, Jiang D, Cao WX, Dai TB (2017) Root extension and nitrate transporter up-regulation induced by nitrogen deficiency improves nitrogen status and plant growth at the seedling stage of winter wheat (Triticum aestivum L.). Environ Exp Bot 141:28–40

    Article  CAS  Google Scholar 

  • Kaur G, Asthir B, Bains NS, Farooq M (2015) Nitrogen nutrition, its assimilation and remobilization in diverse wheat genotypes. Int J Agric Biol 17:531–538

    Article  CAS  Google Scholar 

  • Khavari-Nejad RA, Najafi F, Tofighi C (2009) Diverse responses of tomato to N and P deficiency. Int J Agric Biol 2:209–213

    Google Scholar 

  • Kong QS, Yuan JX, GaoLY ZhaoS, Jiang W, Huang Y, Bie ZL (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS One 9:e90612

    Article  PubMed  PubMed Central  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2002) Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53:773–787

    Article  PubMed  CAS  Google Scholar 

  • Li WB, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li H, Yu M, Du XQ, Wang ZF, Wu WH, Quintero FJ, Jin X-H, Li HD, Wang Y (2017) NRT1.5/NPF7.3 functions as a proton-coupled H+/K+ antiporter for K+ loading into the xylem in Arabidopsis. Plant Cell 29:2016–2026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li WM, Yan MK, Hu BY, Priyadarshani SVGN, Hou ZM, Ojolo SP, Xiong JJ, Zhao HM, Qin Y (2018) Characterization and the expression analysis of nitrate transporter (NRT) gene family in pineapple. Trop Plant Biol 11:177–191

    Article  Google Scholar 

  • Liang JY, Chen XL, Guo PJ, Ren HZ, Xie ZL, Zhang Z, Zhen A (2021) Grafting improves nitrogen-use efficiency by regulating the nitrogen uptake and metabolism under low-nitrate conditions in cucumber. Sci Hortic 289:110454

    Article  CAS  Google Scholar 

  • Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lo’ay AA, Abo EL-Ezz SF (2021) Performance of ‘Flame seedless’ grapevines grown on different rootstocks in response to soil salinity stress. Sci Hortic 275:109704

  • Luo LD, Zheng Y, Gao ZA, Chen Q, Kong XX, Yang YP (2020) Grafting improves drought stress memory by increasing the P5CS1 gene expression in Brassica rapa. Plant Soil 452:61–72

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London

    Google Scholar 

  • Martínez-Ballesta MC, Muries B, Mota-Cadenas C, Carvajal M (2010) Physiological aspects of rootstock-scion interactions. Sci Hortic 127:112–118

    Article  Google Scholar 

  • Nawaz MA, Wang LM, Jiao YY, Chen C, Zhao L, Mei MJ, Yu YL, Bie ZL, Huang Y (2017) Pumpkin rootstock improves nitrogen use efficiency of watermelon scion by enhancing nutrient uptake, cytokinin content, and expression of nitrate reductase genes. Plant Growth Regul 82:233–246

    Article  CAS  Google Scholar 

  • Özmen S, Kanber R, Sarı N, Ünlü M (2015) The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. J Integr Agric 14:966–976

    Article  Google Scholar 

  • Pacheco-Villalobos D, Hardtke CS (2012) Natural genetic variation of root system architecture from Arabidopsis to Brachypodium: towards adaptive value. Phil Trans R Soc B-Biol Sci 367:1552–1558

    Article  CAS  Google Scholar 

  • Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65:5535–5556

    Article  PubMed  CAS  Google Scholar 

  • Qiao YJ, Yin LN, Wang BM, Ke QB, Deng XP, Wang SW (2019) Melatonin promotes plant growth by increasing nitrogen uptake and assimilation under nitrogen deficient condition in winter wheat. Plant Physiol Biochem 139:342–349

    Article  PubMed  CAS  Google Scholar 

  • Qin F, Liu G, Huang GQ, Dong TF, Liao YM, Xu X (2018) Zinc application alleviates the adverse effects of lead stress more in female Morus alba than in males. Environ Exp Bot 146:68–76

    Article  CAS  Google Scholar 

  • Rahman M, Islam T, Jett L, Kotcon J (2021) Biocontrol agent, biofumigation, and grafting with resistant rootstock suppress soil-borne disease and improve yield of tomato in West Virginia. Crop Prot 145:105630

    Article  CAS  Google Scholar 

  • Rellán-Álvarez R, Lobet G, Dinneny JR (2016) Environmental control of root system biology. Annu Rev Plant Biol 67:619–642

    Article  PubMed  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Renkema H, Koopmans A, Kersbergen L, Kikkert J, Hale B, Berkelaar E (2012) The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil 354:239–250

    Article  CAS  Google Scholar 

  • Robredo A, Pérez-López U, Miranda-Apodaca J, Lacuesta M, Mena-Petite A, Muñoz-Rueda A (2011) Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Environ Exp Bot 71:399–408

    CAS  Google Scholar 

  • Roca LF, Romero J, Bohórquez JM, Alcántara E, Fernández-Escobar R, Trapero A (2018) Nitrogen status affects growth, chlorophyll content and infection by Fusicladium oleagineum in olive. Crop Prot 109:80–85

    Article  CAS  Google Scholar 

  • Ruiz JM, Belakbir A, Lhpez-Cantarero I, Romero L (1997) Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Sci Hortic 71:227–234

    Article  Google Scholar 

  • Ruiz JM, Romero L (1999) Nitrogen efficiency and metabolism in grafted melon plants. Sci Hortic 81:113–123

    Article  CAS  Google Scholar 

  • Sallaku G, Sandén H, Babaj I, Kaciu S, Balliu A, Rewald B (2019) Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci Hortic 243:177–188

    Article  Google Scholar 

  • Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M (2014) Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun 5:4983

    Article  PubMed  CAS  Google Scholar 

  • Savvas D, Öztekin GB, Tepecik M, Ropokis A, Tüzel Y, Ntatsi G, Schwarz D (2017) Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. J Horticult Sci Biotechnol 92:294–302

    Article  CAS  Google Scholar 

  • Siddiqi MY, Glass ADM (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302

    Article  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • Tong JF, Walk TC, Han PP, Chen LY, Shen XJ, Li YS, Gu CM, Xie LH, Hu XJ, Liao X, Qin L (2020) Genome-wide identification and analysis of high-affinity nitrate transporter 2 (NRT2) family genes in rapeseed (Brassica napus L.) and their responses to various stresses. BMC Plant Biol 20:464

  • Van der Vliet L, Peterson C, Hale B (2007) Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot 58:2939–2947

    Article  PubMed  Google Scholar 

  • Wang RC, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang YY, Cheng YH, Chen KE, Tsay YF (2018) Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 69:85–122

    Article  PubMed  CAS  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17(8):458–467

    Article  PubMed  CAS  Google Scholar 

  • Xu GH, Fan XR, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Li YX, Wang BX, Hu JY, Liao YM (2015) Salt stress induced sex-related spatial heterogeneity of gas exchange rates over the leaf surface in Populus cathayana Rehd. Acta Physiol Plant 37:1709

    Article  Google Scholar 

  • Yang YJ, Lu XM, Yan B, Li B, Sun J, Guo SR, Tezuka T (2013) Bottle gourd rootstock-grafting affects nitrogen metabolism in NaCl-stressed watermelon leaves and enhances short-term salt tolerance. J Plant Physiol 170:653–661

    Article  PubMed  CAS  Google Scholar 

  • Yin LP, Li P, Wen B, Taylor D, Berry JO (2007) Characterization and expression of a high-affinity nitrate system transporter gene (TaNRT2.1) from wheat roots, and its evolutionary relationship to other NTR2 genes [J]. Plant Sci 172:621–631

    Article  CAS  Google Scholar 

  • Yuan LY, Zhu SD, Li SH, Shu S, Sun J, Guo SR (2014) 24-Epibrassinolide regulates carbohydrate metabolism and increases polyamine content in cucumber exposed to Ca(NO3)2 stress. Acta Physiol Plant 36:2845–2852

    Article  CAS  Google Scholar 

  • Zhang ZH, Cao BL, Chen ZJ, Xu K (2022) Grafting enhances the photosynthesis and nitrogen absorption of tomato plants under low-nitrogen stress. J Plant Growth Regul 41:1714–1725

    Article  CAS  Google Scholar 

  • Zhang ZH, Li MM, Cao BL, Chen ZJ, Xu K (2021) Grafting improves tomato yield under low nitrogen conditions by enhancing nitrogen metabolism in plants. Protoplasma 258:1077–1089

    Article  PubMed  CAS  Google Scholar 

  • Zhen A, Bie ZL, Huang Y, Liu ZX, Li Q (2010) Effects of scion and rootstock genotypes on the antioxidant defense systems of grafted cucumber seedlings under NaCl stress. Soil Sci Plant Nutr 56:263–271

    Article  CAS  Google Scholar 

  • Zhen A, Zhang Z, Jin XQ, Liu T, Ren WQ, Hu XH (2018) Exogenous GABA application improves the NO3–N absorption and assimilation in Ca(NO3)2-treated muskmelon seedlings. Sci Hortic 227:117–123

    Article  CAS  Google Scholar 

  • Zou X, Liu MY, Wu WH, Wang Y (2019) Phosphorylation at Ser28 stabilizes the Arabidopsis nitrate transporter NRT2.1 in response to nitrate limitation. J Integr Plant Biol 62:865–876

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Research Program of Natural Science in Shaanxi Province (2021JQ-142), the Shaanxi Innovative Research Team (2021TD-34), Shaanxi Agricultural Science and Technology Innovation Project (NYKJ-2021-YL(XN)04), and Xi'an Science and Technology Plan (21NYYF0031).

Funding

This work was supported by the Basic Research Program of Natural Science in Shaanxi Province (2021JQ-142), the Shaanxi Innovative Research Team (2021TD-34), Shaanxi Agricultural Science and Technology Innovation Project (NYKJ-2021-YL(XN)04), and Xi'an Science and Technology Plan (21NYYF0031).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by Xiaoling Chen, Peijin Guo, Zhiyu Wang and Wenwen He. Jiayi Liang and Guohu Li analyzed the data. Xiaoling Chen wrote this manuscript. Ai zhen designed the experiment and revised this manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ai Zhen.

Ethics declarations

Ethics approval

This research did not involve human participants or animals.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Richard J. Simpson.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Guo, P., Wang, Z. et al. Grafting improves growth and nitrogen-use efficiency by enhancing NO3 uptake, photosynthesis, and gene expression of nitrate transporters and nitrogen metabolizing enzymes in watermelon under reduced nitrogen application. Plant Soil 480, 305–327 (2022). https://doi.org/10.1007/s11104-022-05583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05583-2

Keywords

Navigation