Amundson R, Austin AT, Schuur EAG et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochem Cycles 17:1031–1041. https://doi.org/10.1029/2002GB001903
CAS
Article
Google Scholar
Barron AR, Purves DW, Hedin LO (2011) Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165:511–520. https://doi.org/10.1007/s00442-010-1838-3
Article
PubMed
Google Scholar
Barthel M, Bauters M, Baumgartner S et al (2022) Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat Commun 13:1–8. https://doi.org/10.1038/s41467-022-27978-6
CAS
Article
Google Scholar
Batterman SA, Hedin LO, Van BM et al (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502:224–227. https://doi.org/10.1038/nature12525
CAS
Article
PubMed
Google Scholar
Baumgartner S, Barthel M, Drake T et al (2020) Seasonality, drivers, and isotopic composition of soil CO2 fluxes from tropical forests of the Congo Basin. Biogeosciences 17:6207–6218. https://doi.org/10.5194/bg-2020-133
CAS
Article
Google Scholar
Bauters M, Drake TW, Verbeeck H et al (2018) High fire-derived nitrogen deposition on central African forests. Proc Natl Acad Sci USA 115:549–554. https://doi.org/10.1073/pnas.1714597115
CAS
Article
PubMed
PubMed Central
Google Scholar
Bauters M, Drake TW, Wagner S et al (2021a) Fire-derived phosphorus fertilization of African tropical forests. Nat Commun 12:5129. https://doi.org/10.1038/s41467-021-25428-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Bauters M, Mapenzi N, Kearsley E et al (2016) Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica 48:281–284. https://doi.org/10.1111/btp.12312
Article
Google Scholar
Bauters M, Moonen P, Summerauer L et al (2021b) Soil Nutrient Depletion and Tree Functional Composition Shift Following Repeated Clearing in Secondary Forests of the Congo Basin. Ecosystems 24:1422–1435. https://doi.org/10.1007/s10021-020-00593-6
CAS
Article
Google Scholar
Bauters M, Verbeeck H, Rütting T et al (2019) Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol Monogr 89:e01342. https://doi.org/10.1002/ecm.1342
Article
Google Scholar
Bortolazzi A, Da L, Rodeghiero M et al (2021) The canopy layer, a biogeochemical actor in the forest N-cycle. Sci Total Environ 776:146024. https://doi.org/10.1016/j.scitotenv.2021.146024
CAS
Article
Google Scholar
Broadbent EN, Zambrano MA, Asner GP et al (2014) Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon. PLoS ONE 9:e86042. https://doi.org/10.1371/journal.pone.0086042
CAS
Article
PubMed
PubMed Central
Google Scholar
Brookshire ENJ, Hedin LO, Newbold JD et al (2012) Sustained losses of bioavailable nitrogen from montane tropical forests. Nat Geosci 5:123–126. https://doi.org/10.1038/ngeo1372
CAS
Article
Google Scholar
Bruijnzeel LA (2004) Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228. https://doi.org/10.1016/j.agee.2004.01.015
Article
Google Scholar
Burt R (2004) Soil survey laboratory methods manual. USDA/NRCS, Washington, DC
Castaldi S, Bertolini T, Chiti T, Valentini R (2013) Nitrous oxide emissions from soil of an African rain Dynamics forest in Ghana. Biogeosciences 10:4179–4187. https://doi.org/10.5194/bg-10-4179-2013
CAS
Article
Google Scholar
Chen Y, Randerson JT, DER Werf GRVAN et al (2010) Nitrogen deposition in tropical forests from savanna and deforestation fires. Glob Chang Biol 16:2024–2038. https://doi.org/10.1111/j.1365-2486.2009.02156.x
Article
Google Scholar
Compton JE, Hooker TD, Perakis SS (2007) Ecosystem N Distribution and d N during a Century of Forest Regrowth after Agricultural Abandonment. Ecosystems 10:1197–1208. https://doi.org/10.1007/s10021-007-9087-y
CAS
Article
Google Scholar
Craine JM, Elmore AJ, Wang L et al (2015) Convergence of soil nitrogen isotopes across global climate gradients. Sci Rep 5:8280. https://doi.org/10.1038/srep08280
CAS
Article
PubMed
PubMed Central
Google Scholar
Curtis PG, Slay CM, Harris NL et al (2018) Classifying drivers of global forest loss. Science 80-(361):1108–1111. https://doi.org/10.1126/science.aau3445
CAS
Article
Google Scholar
da Silva Neto EC, Pereira MG, Carvalho E et al (2019) Temporal evaluation of soil chemical attributes after slash-and-burn agriculture in the Western Brazilian Amazon. Acta Sci 41:1–10. https://doi.org/10.4025/actasciagron.v41i1.42609
Article
Google Scholar
Davidson EA, Davidson EA, Ishida Y et al (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–998. https://doi.org/10.1038/nature05900
CAS
Article
PubMed
Google Scholar
Davidson EA, Martinelli LA (2009) Nutrient Limitations to Secondary Forest Regrowth. In: Michael Keller, Mercedes Bustamante, John Gash PSD (ed) Amazonia and Global Change. AGU, Washington, DC, pp 299–309
De Ridder M, Toirambe B, Van Den BJ et al (2014) Dendrochronological Potential in a Semi-Deciduous Rainforest: The Case of. Forests 5:3087–3106. https://doi.org/10.3390/f5123087
Article
Google Scholar
De Schrijver A, Nachtergale L, Staelens J et al (2004) Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut 131:93–105. https://doi.org/10.1016/j.envpol.2004.01.019
CAS
Article
PubMed
Google Scholar
de Wasseige C, de Marcken P, Bayol N et al (2012) Les forêts du bassin du Congo: État des Forêts 2010. Office des publications de l’Union, Luxembourg
Google Scholar
Du E, Terrer C, Pellegrini AFA et al (2020) Global patterns of terrestrial nitrogen and phosphorus limitation. Nat Geosci 13:221–226. https://doi.org/10.1038/s41561-019-0530-4
CAS
Article
Google Scholar
Elser JJ (2011) A wold awash with Nitrogen. Science 334:1504–1505. https://doi.org/10.1126/science.1215567
CAS
Article
PubMed
Google Scholar
Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the israel coastal plain. J Hydrol 7:178–197. https://doi.org/10.1016/0022-1694(69)90055-9
Article
Google Scholar
Figueiredo V, Enrich-Prast A, Rütting T (2019) Evolution of nitrogen cycling in regrowing Amazonian rainforest. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-43963-4
CAS
Article
Google Scholar
Gallarotti N, Barthel M, Verhoeven E et al (2021) In-depth analysis of N 2 O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J 15:3357–3374. https://doi.org/10.1038/s41396-021-01004-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Gerland P, Raftery AE, Ševcíková H et al (2014) World Population Stabilization Unlikely This Century Patrick. Science 80-(346):234–237. https://doi.org/10.1126/science.1257469.World
Article
Google Scholar
Hedin LO, Brookshire ENJ, Menge DNL, Barron a R (2009) The Nitrogen Paradox in Tropical Forest Ecosystems. Annu Rev Ecol Evol Syst 40:613–635. https://doi.org/10.1146/Annurev.Ecolsys.37.091305.110246
Article
Google Scholar
Hietz P, Turner BL, Wanek W et al (2011) Long-Term Change in the Nitrogen Cycle of Tropical Forests. Science 80-(334):664–666. https://doi.org/10.1126/science.1211979
CAS
Article
Google Scholar
Hofhansl F, Wanek W, Drage S et al (2011) Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, Southwest Costa Rica. Biogeochemistry 106:371–396. https://doi.org/10.1007/s10533-010-9517-3
Article
Google Scholar
Houlton BZ, Bai E (2009) Imprint of denitrifying bacteria on the global terrestrial biosphere ENVIRONMENTAL. Proc Natl Acad Sci 106:21713–21716. https://doi.org/10.1073/pnas.0912111106
Article
PubMed
PubMed Central
Google Scholar
Hubau W, Lewis SL, Phillips OL et al (2020) Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579:80–87. https://doi.org/10.1038/s41586-020-2035-0
CAS
Article
PubMed
Google Scholar
Hutchinson GL, Mosier AR (1981) Improved Soil Cover Method for Field Measurement of Nitrous Oxide Fluxes. Soil Sci Soc Am J 45:311–316. https://doi.org/10.2136/sssaj1981.03615995004500020017x
CAS
Article
Google Scholar
Jenny H (1950) Causes of the high nitrogen and organic matter content of certain tropical forest soils. Soil Sci 69:63–69. https://doi.org/10.1097/00010694-195001000-00005
CAS
Article
Google Scholar
Kohler S, Jungkunst HF, Eramsi S, Gerold G (2013) The effects of land use change on atmospheric nutrient deposition in central Sulawest. Erdkunde 2:109–122. https://doi.org/10.3112/erdkunde.2013.02.01
Article
Google Scholar
Kukla J, Whitfeld T, Petr C et al (2019) The effect of traditional slash - and - burn agriculture on soil organic matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea. L Degrad Dev 30:166–177. https://doi.org/10.1002/ldr.3203
Article
Google Scholar
Lawrence D, Odorico PD, Delonge M et al (2008) Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. PNAS 104:20696–20701. https://doi.org/10.1073/pnas.0705005104
Article
Google Scholar
Magliano PN, Whitworth-Hulse JI, Baldi G (2019) Interception, throughfall and stemflow partition in drylands: Global synthesis and meta-analysis. J Hydrol 568:638–645. https://doi.org/10.1016/j.jhydrol.2018.10.042
Article
Google Scholar
Makelele IA, Verheyen K, Boeckx P et al (2021) Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J Veg Sci 32:e13071. https://doi.org/10.1111/jvs.13071
Article
Google Scholar
Markewitz D, Davidson E, Moutinho P, Nepstad D (2004) Nutrient loss and redistribution after forest clearing on highly weathered soil in amazonia. Ecol Appl 14:177–199. https://doi.org/10.1890/01-6016
Article
Google Scholar
Marthews TR, Riutta T, Menor IO, et al (2014) Measuring tropical forest carbon allocation and cycling (v3.0). Manual, Global Ecosystems Monitoring network. http://gem.tropicalforests.ox.ac.uk/
Martin PA, Newton AC, Bullock JM (2013) Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc R Soc B Biol Sci 280:20132236. https://doi.org/10.1098/rspb.2013.2236
Article
Google Scholar
Martinelli ALA, Piccolo MC, Townsend AR, et al (1999) Nitrogen stable isotopic composition of leaves and soil : Tropical versus temperate forests recycling in the temperate and tropical americas. Biogeochemistry 46:45–65. https://doi.org/10.1023/A:1006100128782
Mcgrath DA, Smith CK, Gholz HL, Oliveira FDA (2001) Effects of land-Use change on soil nutrient dynamics in Amazonia. Ecosystems 4:625–645. https://doi.org/10.1007/s10021-001-0033-0
CAS
Article
Google Scholar
Metcalfe DB, Williams M, Aragão LEOC, et al (2007) A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurement accuracy. New Phytol 697–703. https://doi.org/10.1111/j.1469-8137.2007.02032.x
Meyerholt J, Sickel K, Zaehle S (2020) Ensemble projections elucidate effects of uncertainty in terrestrial nitrogen limitation on future carbon uptake. Glob Chang Biol 26:3978–3996. https://doi.org/10.1111/gcb.15114
Article
PubMed
Google Scholar
Moonen PCJ, Verbist B, Boyemba Bosela F et al (2019) Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Sci Total Environ 659:101–114. https://doi.org/10.1016/j.scitotenv.2018.12.138
CAS
Article
PubMed
Google Scholar
Muñoz-Villers LE, Holwerda F, Gómez-Cárdenas M et al (2012) Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. J Hydrol 462–463:53–66. https://doi.org/10.1016/j.jhydrol.2011.01.062
Article
Google Scholar
Murphy JD, Johnson DW, Miller WW et al (2006) Wildfire Effects on Soil Nutrients and Leaching in a Tahoe Basin Watershed. J Environ Qual 35:479–489. https://doi.org/10.2134/jeq2005.0144
CAS
Article
PubMed
Google Scholar
Ometto JPHB, Ehleringer JR, Domingues TF et al (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251–274. https://doi.org/10.1007/s10533-006-9008-8
CAS
Article
Google Scholar
Owuor SO, Guzha AC, Rufino MC et al (2016) Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol Process. https://doi.org/10.1186/s13717-016-0060-6
Article
Google Scholar
Oziegbe MB, Muoghalu JI, Oke SO (2011) Litterfall, precipitation and nutrient fl uxes in a secondary lowland rain forest in Ile – Ife, Nigeria. Acta Bot Brasilica 25:664–671
Article
Google Scholar
Pardo LH, Kendall C, Pett-ridge J, Chang CCY (2004) Evaluating the source of streamwater nitrate using d15N and d18O in nitrate in two watersheds in New Hampshire, USA. Hydrol Process 2712:2699–2712
Article
Google Scholar
Parker GG (1983) Throughfall and Stemflow in the Forest Nutrient Cycle. Adv Ecol Res 13:57–133. https://doi.org/10.1016/S0065-2504(08)60108-7
Article
Google Scholar
Pérez-Harguindeguy N, Díaz S, Garnier E, et al (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234. https://doi.org/10.1071/BT12225
Poorter L, Bongers F, Aide TM, et al (2016) Biomass resilience of Neotropical secondary forests. Nature 530. https://doi.org/10.1038/nature16512
Porder S, Asner GP, Vitousek PM (2005) Ground-based and remotely sensed nutrient availability across a tropical landscape. Proc Natl Acad Sci USA 102:10909–10912. https://doi.org/10.1073/pnas.0504929102
CAS
Article
PubMed
PubMed Central
Google Scholar
Powers JS, Marín-Spiotta E (2017) Ecosystem Processes and Biogeochemical Cycles in Secondary Tropical Forest Succession. Annu Rev Ecol Evol Syst 48:497–519. https://doi.org/10.1146/annurev-ecolsys-110316-022944
Article
Google Scholar
R Development Core Team (2018) R: A language and environment for statistical computing, http://www.r-project.org
Reay DS, Dentener F, Smith P et al (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437. https://doi.org/10.1038/ngeo230
CAS
Article
Google Scholar
Ross R (1954) Ecological Studies on the Rain Forest of Southern Nigeria: III. Secondary Succession in the Shasha Forest Reserve. J Ecol 42:259–282. https://doi.org/10.2307/2256861
Article
Google Scholar
Runyan CW, Odorico PD, Vandecar KL et al (2013) Positive feedbacks between phosphorus deposition and forest canopy trapping, evidence from Southern Mexico. Biogeosciences 118:1521–1531. https://doi.org/10.1002/2013JG002384
Article
Google Scholar
Sandström K (1995) Differences in Groundwater Response to Deforestation - A Continuum of Interactions between Hydroclimate, Landscape Characteristics and Time. GeoJournal 35:539–546. https://doi.org/10.1007/BF00824371
Article
Google Scholar
Schmidt SK, Costello EK, Nemergut DR et al (2007) Biogeochemical Consequences of Rapid Microbial Turnover. Ecology 88:1379–1385. https://doi.org/10.1890/06-0164
CAS
Article
PubMed
Google Scholar
Serca D, Delmas R, Jambert C, Labroue L (1994) Tellus B : Chemical and Physical Meteorology Emissions of nitrogen oxides from equatorial rain forest in central Africa. Tellus 46B:243–254. https://doi.org/10.3402/tellusb.v46i4.15795
CAS
Article
Google Scholar
Slik JWF, Arroyo-Rodríguez V, Aiba SS-I et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci 112:7472–7477. https://doi.org/10.1073/pnas.1512611112
CAS
Article
PubMed
PubMed Central
Google Scholar
Stevens CJ (2019) Nitrogen in the environment. Science 80-(363):578–580. https://doi.org/10.1126/science.aav8215
CAS
Article
Google Scholar
Suarez RD, Rozendaal DMAA, De Sy V et al (2019) Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob Chang Biol 25:3609–3624. https://doi.org/10.1111/gcb.14767
Article
Google Scholar
Sullivan BW, Nifong RL, Nasto MK et al (2019) Biogeochemical recuperation of lowland tropical forest during succession. Ecology 100(1–14):e02641. https://doi.org/10.1002/ecy.2641
Article
PubMed
Google Scholar
Townsend AR, Cleveland CC, Houlton BZ et al (2011) Multi-element regulation of the tropical forest carbon cycle In a nutshell. Front Ecol Environ 9:9–17. https://doi.org/10.1890/100047
Article
Google Scholar
Tyukavina A, Hansen MC, Potapov P et al (2018) Congo Basin forest loss dominated by increasing smallholder clearing. Sci Adv 4:eaat2993. https://doi.org/10.1126/sciadv.aat2993
Article
PubMed
PubMed Central
Google Scholar
Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: So2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems: proceedings of a workshop held at Go¨ttingen, West Germany, May 16–18, 1982. Springer, Dordrecht, pp 33–45
Van Langenhove L, Verryckt LT, Bréchet L et al (2020) Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests. Biogeochemistry 149:175–193. https://doi.org/10.1007/s10533-020-00673-8
CAS
Article
Google Scholar
Verchot LV, Dannenmann M, Kengdo SK et al (2020) Land-use change and Biogeochemical controls of soil CO 2, N 2 O and CH 4 fluxes in Cameroonian forest landscapes. J Integr Environ Sci 17:45–67. https://doi.org/10.1080/1943815X.2020.1779092
Article
Google Scholar
Vitousek PM, Sanford RL, Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167. https://doi.org/10.1146/annurev.es.17.110186.001033
Article
Google Scholar
Wang L, Shaner PL, Macko S (2007) Foliar d 15 N patterns along successional gradients at plant community and species levels. Geophys Res Lett 34:1–6. https://doi.org/10.1029/2007GL030722
Article
Google Scholar
Wang S, Zuo Q, Cao Q et al (2021) Acceleration of soil N 2 O flux and nitrogen transformation during tropical secondary forest succession after slash-and-burn agriculture. Soil Tillage Res 208:104868. https://doi.org/10.1016/j.still.2020.104868
Article
Google Scholar
Werner C, Haas E, Hickler T, Kiese R (2007) A global inventory of N 2 O emissions from tropical rainforest soils using a detailed biogeochemical model. Global Biogeochem Cycles 21:GB3010. https://doi.org/10.1029/2006GB002909
CAS
Article
Google Scholar
Williams MR, Fisher TR, Melack JM (1997) Chemical composition and deposition of rain in the central Amazon, Brazil. Atmos Environ 31:207–217. https://doi.org/10.1016/1352-2310(96)00166-5
CAS
Article
Google Scholar
Winbourne JB, Feng A, Reynolds L et al (2018) Nitrogen cycling during secondary succession in Atlantic Forest of Bahia. Brazil Sci Rep 8:1377. https://doi.org/10.1038/s41598-018-19403-0
CAS
Article
PubMed
Google Scholar
Yang B, Kun D, Han L et al (2019) The effects of tree characteristics on rainfall interception in urban areas. Landsc Ecol Eng 15:289–296. https://doi.org/10.1007/s11355-019-00383-w
CAS
Article
Google Scholar
Yasui-tamura S, Hashihama F, Ogawa H, Nishimura T (2020) Automated simultaneous determination of total dissolved nitrogen and phosphorus in seawater by persulfate oxidation method. Talanta Open 2:100016. https://doi.org/10.1016/j.talo.2020.100016
Article
Google Scholar
Yue K, De Frenne P, Fornara DA et al (2021) Global patterns and drivers of rainfall partitioning by trees and shrubs. Glob Chang Biol 27:3350–3357. https://doi.org/10.1111/gcb.15644
Article
PubMed
Google Scholar
Zarin DJ, Davidson EA, Brondizio E et al (2005) Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front Ecol Environ 3:365–369. https://doi.org/10.1890/1540-9295(2005)003[0365:LOFSCA]2.0.CO;2
Article
Google Scholar
Zimmermann B, Zimmermann A, Scheckenbach HL et al (2013) Changes in rainfall interception along a secondary forest succession gradient in lowland Panama. Hydrol Earth Syst Sci 17:4659–4670. https://doi.org/10.5194/hess-17-4659-2013
Article
Google Scholar