Bhalla S, Garg N (2021) Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp. Mycorrhiza 31:735–754. https://doi.org/10.1007/s00572-021-01056-z
CAS
Article
PubMed
Google Scholar
Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, Caicedo AL, Gao CX, Gu Y, Hazen SP, Holt BF, Hong SY, Jordan M, Manzaneda AJ, Mitchell-Olds T, Mochida K, Mur LAJ, Park CM, Sedbrook J, Watt M, Zheng SJ, Vogel JP (2011) Brachypodium as a model for the grasses: Today and the future. Plant Physiol 157:3–13. https://doi.org/10.1104/pp.111.179531
CAS
Article
PubMed
PubMed Central
Google Scholar
Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. https://doi.org/10.1016/j.tplants.2013.05.001
CAS
Article
PubMed
Google Scholar
Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503. https://doi.org/10.1016/S0038-0717(96)00163-0
CAS
Article
Google Scholar
Cooke J, Leishman MR (2011a) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68. https://doi.org/10.1016/j.tplants.2010.10.003
CAS
Article
PubMed
Google Scholar
Cooke J, Leishman MR (2011b) Silicon concentration and leaf longevity: is silicon a player in the leaf dry mass spectrum? Funct Ecol 25:1181–1188. https://doi.org/10.1111/j.1365-2435.2011.01880.x
Article
Google Scholar
Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defences: evidence from vegetation communities of contrasting soil types. Oikos 121:2052–2060. https://doi.org/10.1111/j.1600-0706.2012.20057.x
Article
Google Scholar
Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds OL, Ma JF, Kronzucker HJ, Bélanger RR (2019) The controversies of silicon’s role in plant biology. New Phytol 221:67–85. https://doi.org/10.1111/nph.15343
Article
PubMed
Google Scholar
de Tombeur F, Cornelis JT, Lambers H (2021a) Silicon mobilisation by root-released carboxylates. Trends Plant Sci 26:1116–1125. https://doi.org/10.1016/j.tplants.2021.07.003
CAS
Article
PubMed
Google Scholar
de Tombeur F, Roux P, Cornelis JT (2021b) Silicon dynamics through the lens of soil-plant-animal interactions: perspectives for agricultural practices. Plant Soil 467:1–28. https://doi.org/10.1007/s11104-021-05076-8
CAS
Article
Google Scholar
Deshmukh R, Bélanger RR (2016) Molecular evolution of aquaporins and silicon influx in plants. Funct Ecol 30:1277–1285. https://doi.org/10.1111/1365-2435.12570
Article
Google Scholar
Ebell LF (1969) Variation in total soluble sugars of conifer tissues with method of analysis. Phytochemistry 8:227–233. https://doi.org/10.1016/S0031-9422(00)85818-5
CAS
Article
Google Scholar
Epstein E (1999) Silicon. Annu Rev Plant Physiol and Plant Molec Biol 50:641–664. https://doi.org/10.1146/annurev.arplant.50.1.641
Frew A, Powell JR, Allsopp PG, Sallam N, Johnson SN (2017a) Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil 419:423–433. https://doi.org/10.1007/s11104-017-3357-z
CAS
Article
Google Scholar
Frew A, Powell JR, Glauser G, Bennett AE, Johnson SN (2018a) Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations. Soil Biol Biochem 126:123–132. https://doi.org/10.1016/j.soilbio.2018.08.019
CAS
Article
Google Scholar
Frew A, Powell JR, Hiltpold I, Allsopp PG, Sallam N, Johnson SN (2017b) Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biol Biochem 112:117–126. https://doi.org/10.1016/j.soilbio.2017.05.008
CAS
Article
Google Scholar
Frew A, Weston LA, Reynolds OL, Gurr GM (2018b) The role of silicon in plant biology: a paradigm shift in research approach. Ann Bot 121:1265–1273. https://doi.org/10.1093/aob/mcy009
CAS
Article
PubMed
PubMed Central
Google Scholar
Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78:371–387. https://doi.org/10.1007/s10725-015-0099-x
Garg N, Kashyap L (2017) Silicon and Rhizophagus irregularis: potential candidates for ameliorating negative impacts of arsenate and arsenite stress on growth, nutrient acquisition and productivity in Cajanus cajan (L.) Millsp. genotypes. Environ Sci Pollut Res 24:18520–18535. https://doi.org/10.1007/s11356-017-9463-x
CAS
Article
Google Scholar
Gbongue L-R, Lalaymia I, Zeze A, Delvaux B, Declerck S (2019) Increased silicon acquisition in bananas colonized by Rhizophagus irregularis MUCL 41833 reduces the incidence of Pseudocercospora fijiensis. Front Plant Sci 9:1977. https://doi.org/10.3389/fpls.2018.01977
Glazowska S, Murozuka E, Persson DP, Castro PH, Schjoerring JK (2018) Silicon affects seed development and leaf macrohair formation in Brachypodium distachyon. Physiol Plant 163:231–246. https://doi.org/10.1111/ppl.12675
CAS
Article
PubMed
Google Scholar
Hajiboland R, Moradtalab N, Aliasgharzad N, Eshaghi Z, Feizy J (2018) Silicon influences growth and mycorrhizal responsiveness in strawberry plants. Physiol Mol Biol Plants 24:1103–1115. https://doi.org/10.1007/s12298-018-0533-4
CAS
Article
PubMed
PubMed Central
Google Scholar
Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129. https://doi.org/10.1007/s00572-010-0316-4
CAS
Article
PubMed
Google Scholar
Hiltpold I, Demarta L, Johnson SN, Moore BD, Power SA, Mitchell C (2017) Silicon and other essential element composition in roots using X-ray fluorescence spectroscopy: a high throughput approach. In: SN Johnson (ed) Invertebrate Ecology of Australasian Grasslands Proceedings of the Ninth ACGIE, Western Sydney University, Hawkesbury, NSW, Australia
Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046. https://doi.org/10.1093/aob/mci255
CAS
Article
PubMed
PubMed Central
Google Scholar
Johnson SN, Benefer CM, Frew A, Griffiths BS, Hartley SE, Karley AJ, Rasmann S, Schumann M, Sonnemann I, Robert CAM (2016) New frontiers in belowground ecology for plant protection from root-feeding insects. Appl Soil Ecol 108:96–107. https://doi.org/10.1016/j.apsoil.2016.07.017
Article
Google Scholar
Johnson SN, Rowe RC, Hall CR (2020) Silicon is an inducible and effective herbivore defence against Helicoverpa punctigera (Lepidoptera: Noctuidae) in soybean. Bull Entomol Res 110:417–422. https://doi.org/10.1017/S0007485319000798
CAS
Article
PubMed
Google Scholar
Ju S, Wang N, Chen M, Wang J (2021) Arbuscular mycorrhizal fungi regulate tomato silicon absorption. Soil Sci Plant Nutr 67:408414. https://doi.org/10.1080/00380768.2021.1927833
Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882. https://doi.org/10.1126/science.1208473
CAS
Article
PubMed
Google Scholar
Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of va mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645. https://doi.org/10.1111/j.1469-8137.1990.tb00549.x
Kumar S, Soukup M, Elbaum R (2017) Silicification in grasses: Variation between different cell types. Front Plant Sci 8:438. ARTN 438. https://doi.org/10.3389/fpls.2017.00438
Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630. https://doi.org/10.1111/nph.12011
CAS
Article
PubMed
Google Scholar
Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442. https://doi.org/10.1016/j.tplants.2015.04.007
CAS
Article
PubMed
Google Scholar
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
CAS
Article
PubMed
Google Scholar
McNaughton SJ, Tarrants JL, McNaughton MM, Davis RH (1985) Silica as a defense against herbivory and a growth promoter in African grasses. Ecology 66:528–535. https://doi.org/10.2307/1940401
CAS
Article
Google Scholar
Moradtalab N, Hajiboland R, Aliasgharzad N, Hartmann TE, Neumann G (2019) Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9:41. https://doi.org/10.3390/agronomy9010041
Oye Anda CC, Opfergelt S, Declerck S (2016) Silicon acquisition by bananas (c.v. Grande Naine) is increased in presence of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Plant Soil 409:77–85. https://doi.org/10.1007/s11104-016-2954-6
CAS
Article
Google Scholar
Putra R, Powell JR, Hartley SE, Johnson SN (2020) Is it time to include legumes in plant silicon research? Funct Ecol 34:1142–1157. https://doi.org/10.1111/1365-2435.13565
Article
Google Scholar
Quigley KM, Griffith DM, Donati GL, Anderson TM (2020) Soil nutrients and precipitation are major drivers of global patterns of grass leaf silicification. Ecology 101:e03006. https://doi.org/10.1002/ecy.3006
Article
PubMed
Google Scholar
Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207. https://doi.org/10.1111/j.1469-185X.1983.tb00385.x
CAS
Article
Google Scholar
Reidinger S, Ramsey MH, Hartley SE (2012) Rapid and accurate analyses of silicon and phosphorus in plants using a portable X-ray fluorescence spectrometer. New Phytol 195:699–706. https://doi.org/10.1111/j.1469-8137.2012.04179.x
CAS
Article
PubMed
Google Scholar
Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, London, UK
Google Scholar
Vega I, Pontigo S, Nunes-Nesi A, de la Luz MM, Meier S, Cartes P (2021) Interaction between silicon and arbuscular mycorrhizal symbiosis: An ecologically sustainable tool to improve crop fitness under a drought scenario? J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-021-00701-y
Article
Google Scholar
Veresoglou SD, Johnson D, Mola M, Yang G, Rillig MC (2021) Evolutionary bet-hedging in arbuscular mycorrhiza-associating angiosperms. New Phytol 233:1984–1987. https://doi.org/10.1111/nph.17852
Veresoglou SD, Menexes G, Rillig MC (2012) Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 22:227–235. https://doi.org/10.1007/s00572-011-0398-7
Article
PubMed
Google Scholar
Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots†. Physiol Plant 125:393–404. https://doi.org/10.1111/j.1399-3054.2005.00564.x
CAS
Article
Google Scholar
Yost RS, Fox RL (1982) Influence of mycorrhizae on the mineral contents of cowpea and soybean grown in an Oxisol1. Agron J 74:475–481. https://doi.org/10.2134/agronj1982.00021962007400030018x
Article
Google Scholar