Skip to main content

Cowpea induced physicochemical and biological rhizosphere changes in hydrocarbon contaminated soil

Abstract

Purpose

To understand the influence of cowpea on its rhizosphere physicochemical and biological conditions.

Methods

Pristine soil samples were contaminated with Bonny-Light crude oil and viable seeds of cowpea were planted to establish rhizosphere soil. Cowpea root exudates were collected and characterized while soil metabolic activities, physicochemical properties and rhizosphere effect were monitored following plant emergence.

Results

Cowpea root exudates were composed of organic acids, phenolics, carbohydrates and hydrocarbons. High rate of soil respiration and microbial biomass carbon were observed in the contaminated rhizosphere reaching its peak on 12th week (70.56 mgCO2g−1 day−1) and 10th week (23.18 mg/Kg) respectively. Lower rates of soil respirations and microbial biomass carbon were observed in contaminated (10.28 mgCO2g−1 day−1; 1.24 mg/Kg) and uncontaminated (0.23 mgCO2g−1 day−1; 0.37 mg/Kg) non-rhizosphere control soils respectively. The metabolic properties were positively correlated with soil organic matter contents and microbial size (r = 0.98; p < 0.05). There was considerable improvement in soil physicochemical properties in the cowpea rhizosphere as compared to non-rhizosphere soil. Microbial populations were generally improved with positive rhizosphere effect values (> 1) presumably due to the presence of compounds in exudates that promote microbial growth.

Conclusion

The results highlighted the influence of cowpea on its rhizosphere conditions which is a good indication for its ability to promote plant growth and environmental cleanup. Therefore, there is the need to further understand the microbial community dynamics in cowpea rhizosphere using culture-independent techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdullah SRS, Al-Baldawi IA, Almansoory AF, Purwanti IF, Al-Sbani NH, Sharuddin SSN (2020) Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere 125932. https://doi.org/10.1016/j.chemosphere.2020.125932

  • Abii T, Nwosu PC (2009) The effect of oil-spillage on the soil of Eleme in Rivers State of the Niger-Delta Area of Nigeria. Res J Environ Sci 3:316–320

    CAS  Article  Google Scholar 

  • Alarcon A, García-Díaz M, Hernández-Cuevas LV, Esquivel-Cote L, Ferrera-Cerrato R, Almaraz-Suarez JJ, Ferrera-Rodríguez O (2019) Impact of crude oil on functional groups of culturable bacteria and colonization of symbiotic microorganisms in the clitoria-brachiaria rhizosphere grown in mesocosms. Acta Biol Colomb 24(2):343–353

    CAS  Article  Google Scholar 

  • Amellal N, Portal JM, Vogel T, Berthelin J (2001) Distribution and location of polycyclic aromatic hydrocarbons (pahs) and pah degrading bacteria within polluted soil aggregates. Biodegradation 12:49–57

    CAS  Article  Google Scholar 

  • Atagana HI, Anyasi RO (2017) Assessment of plants at petroleum contaminated site for phytoremediation. In: Proceedings of the international conference of recent trends in environmental science and engineering (RTESE’17) Toronto, Canada—August 23–25, Paper No. 105

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    CAS  Article  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  Google Scholar 

  • Baumert VL, Vasilyeva NA, Vladimirov AA, Meier IC, Kögel-Knabner I, Mueller CW (2018) Root exudates induce soil macroaggregation facilitated by fungi in subsoil. Front Environ Sci 6:140. https://doi.org/10.3389/fenvs.2018.00140

    Article  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46:7–21

    CAS  Article  Google Scholar 

  • Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Brussaard L (2018) Soil quality – A critical review. Soil Biol Biochem 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74(3):738–744

  • Carmo DLD, Lima LBD, Silva CA (2016) Soil fertility and electrical conductivity affected by organic waste rates and nutrient inputs. Revista Brasileira de Ciência do Solo 40

  • Chakravarty P, Bauddh K, Kumar M (2017) Phytoremediation: A multidimensional and ecologically viable practice for the cleanup of environmental contaminants. In: Bauddh K et al (eds) Phytoremed Potential Bioenergy Plants 1–46. https://doi.org/10.1007/978-981-10-3084-0_1

  • Clocchiatti A, Hannula SE, van den Berg M, Hundscheid MPJ, de Boer W (2021) Evaluation of phenolic root exudates as stimulants of saptrophic fungi in the rhizosphere. Front Microbiol 12:644046. https://doi.org/10.3389/fmicb.2021.644046

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa-Garcia S, Armand PS, St-Arnaud M, Yergeau E (2018) Rhizoremediation of petroleum hydrocarbons: A model system for plant microbiome manipulation. Microb Biotechnol 11(5):819–832. https://doi.org/10.1111/1751-7915.13303PMID:300664642008.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab PA, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    CAS  Article  Google Scholar 

  • Da Silva L, Olivares FL, Oliveira RR, Garcia Vega MR, Aguiar NO, Canellas LP (2014) Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicae and humic acids. Chem Biol Technol Agric 1:23. http://www.chembioagro.com/content/1/1/23

  • Dakora F, Phillips D (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):201–213. Retrieved June 17, 2021, from http://www.jstor.org/stable/24121066

  • Davis DW, Oelke EA, Oplinger ES, Doll JD, Hanson CV, Putnam DH (1991) Cowpea. Alternative field crops manual. University of Wisconsin Cooperative or Extension Service, Madison, WI. http://www.hort.purdue.edu/newcrop/afcm/cowpea.html. Accessed 3 Aug 2012

  • de Souza RB, Maziviero TG, Christofoletti CA, Fontanetti CS (2013) Soil contamination with heavy metals and petroleum derivates: impact on edaphic fauna and remediation strategies. In: Soriano MCH (ed). Soil processes and current Trend in quality assessment. IntechOpen London, UK. https://doi.org/10.5772/45835

  • Diab E (2008) Phytoremediation of oil contaminated desert soil using the rhizosphere effects. Glob J Environ Res 2(2):66–73

    Google Scholar 

  • Doerge T (2001) Fitting soil electrical conductivity measurements into the precision farming toolbox. 2001 wisconsin fertilizer, aglime and pest management conference. 10.1.1.640.2744. Available online at http://www.veristech.com/last accessed 12/3/03.

  • Duan X, Zhao Y, Zhang J (2020) Characteristics of the root exudate release system of typical plants in plateau lakeside wetland under phosphorus stress conditions. Open Chem 18(1):808–821. https://doi.org/10.1515/chem-2020-0059

    CAS  Article  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  Google Scholar 

  • Ebuehi OAT, Abibo IB, Shekeolo PD, Sigismund KI, Adoki A, Okoro IC (2005) Remediation of crude oil contaminated soil by enhanced natural attenuation technique. JASEM 9(1):103–106

    Google Scholar 

  • Efsun DF, Olcay Hüseyin S (2015) Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil. Int Biodeterior Biodegrad 2015:268–275

    Google Scholar 

  • Farrell RE, Germida JJ (2002) Phytotechnologies: Plant-based Systems for remediation of oil impacted soils. Available from https://www.esaa.org/wp-content/uploads/2015/06/02-09FarrellPaper

  • Fine P, Graber ER, Yaron B (1997) Soil interactions with petroleum hydrocarbons: Abiotic processes. Soil Technol 10(1997):133–153

    Article  Google Scholar 

  • Food and Agriculture Organization, FAO (2018) Outcome document of the global symposium on soil pollution. Held on 2 - 4 May 2018 at FAO Headquarters, Rome, Italy

  • Food and Agriculture Organization, FAO (2015) Soil biodiversity. Int Year of Soils 2015. Available on: www.fao.org

  • Fortin-Faubert M, Desjardins D, Hijri M, Labrecque M (2021) Willows used for phytoremediation increased organic contaminant concentrations in soil surface. Appl Sci 11(7):2979

    Article  Google Scholar 

  • Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ techniquefor cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada (PTAC) Calgary, AB

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci 176(1):20–30. https://doi.org/10.1016/j.plantsci.2008.09.014

    CAS  Article  Google Scholar 

  • Hajabbasi MA (2016) Importance of soil physical characteristics for petroleum hydrocarbons phytoremediation: A Review. Afr J Environ Sci Technol 10(11):394–405

    CAS  Article  Google Scholar 

  • Hegazy TA, Ibrahim MS, El- Hamid HTA, El-Moselhy KM (2014) Microcosm application for improving biodegradation potentials of diesel oil contaminated marine sediments. Int J Adv Res 2(9):623–631

    Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: A Review. Plant Soil 248:43–59

    CAS  Article  Google Scholar 

  • Ho YN, Mathew DC, Huang CC (2017) Plant-Microbe Ecology: Interactions of Plants and Symbiotic Microbial Communities. Plant Ecology - Traditional Approaches to Recent Trends. https://doi.org/10.5772/intechopen.69088

    Article  Google Scholar 

  • Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS (2021) Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. J Hazard Mater 123282. https://doi.org/10.1016/j.jhazmat.2020.123282

  • Huesemann MH, Hausmann TS, Fortman TJ (2004) Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation 15:261–274

    CAS  Article  Google Scholar 

  • Hussain I, Puschenreiter M, Gerhard S, Schöftner P, Yousaf S, Wang A, Syed JH, Reichenaue TG (2018) Rhizoremediation of petroleum hydrocarbon-contaminated soils: improvement opportunities and field applications. Environ Exp Bot 147:202–219

    CAS  Article  Google Scholar 

  • International Institute of Tropical Agriculture (IITA) (1979). Selected methods for soil and plant analysis. Manual No. 1. International Institute of Tropical Agriculture (IITA) Ibadan, Nigeria

  • Ismail HY, Riskuwa-Shehu ML, Allamin IA, Farouq AA, Abakwak CS (2019) Biostimulation potentials of Vigna species (L.) in hydrocarbon impacted soil. Am J Biosci Bioeng 7(1):22–27. https://doi.org/10.11648/j.bio.20190701.15.

  • Ismail HY, Farouq AA, Rabah AB, Muhammad AB, Allamin IA, Ibrahim UB, Bukar UA (2021) Microbe-assisted phytoremediation of petroleum hydrocarbons. In: Malik JA (ed) Handbook of Research on Microbial Remediation and Microbial Biotechnology for Sustainable Soil 386–416

  • Interstate Technology & Regulatory Council; ITRC (2009) Phytotechnology technical and regulatory guidance and decision trees, revised. PHYTO-3. Washington, D.C.: Interstate Technology & Regulatory Council, Phytotechnologies Team, Tech Reg Update. www.itrcweb.org

  • Jidere CM, Akamigbo FOR, Ugwuanyi JO (2012) Phytoremediation potentials of cowpea (Vigna unguiculata) and Maize (Zea mays) for hydrocarbon degradation in organic and inorganic manure-amended tropical typic paleustults. Int J Phytorem 14(4):362–373. https://doi.org/10.1080/15226514.2011.620652

    CAS  Article  Google Scholar 

  • Kebede E, Amsalu B, Argaw A, Tamiru S (2021) Abundance of native rhizobia nodulating cowpea in major production areas of Ethiopia as influenced by cropping history and soil properties. Sustain Environ 7:1. https://doi.org/10.1080/27658511.2021.1889084

    CAS  Article  Google Scholar 

  • Khan MA, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- A Review. Chemosphere. https://doi.org/10.1016/j.Chemosphere.2018.08.094

    Article  PubMed  PubMed Central  Google Scholar 

  • Koshlaf E, Ball AS (2017) Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology 3(1):25–49. https://doi.org/10.3934/microbiol.2017.1.25

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li C, Zheng F, Zhang H, Yu H, (2019) Composition identification and allelopathic effect of root exudates of ginseng in different continuous cropping years. Acta Microsc 28

  • Zhu X, Li X, Xing, F, Chen C, Huang G, Gao Y (2020) Interaction between root exudates of the poisonous plant Stellera chamaejasme L. and arbuscular mycorrhizal fungi on the growth of Leymus chinensis (Trin.) Tzvel. Microorganisms 8(3):364

  • LeFevre GH, Hozalski RM, Novak PJ (2013) Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci  Tech 15;47(20):11545–53

  • Lundberg DS, Teixeira PJPL (2018) Root-exuded coumarin shapes the root microbiome. PNAS 115(22):5629–5631. www.pnas.org/cgi/doi/https://doi.org/10.1073/pnas.1805944115

  • Marinescu M, Toti M, Tanase V, Plopeanu G, Calciu I, Marinescu M (2001) The effects of crude oil pollution on physical and chemical characteristics of soil. Res J Agric Sci 43(3):125–129

    Google Scholar 

  • Masakorala K, Yao J, Chandankere R, Liu H, Liu W, Cai M, Choi MM (2014) A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil. Environ Sci Pollut Res 21(1):454–463

    CAS  Article  Google Scholar 

  • Michel J, Fingas M (2016) Oil Spills: causes, consequences, prevention, and countermeasures. In book: Fossil Fuels. 159–201

  • Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow A, Abawi GS (2016) Comprehensive assessment of soil health: The Cornell framework manual (3.1 ed). Cornell University

  • Mohammed MMD, Ibrahim NA, Chen M, Zhai L (2014) Rubiothiazepine a novel unusual cytotoxic alkaloid from Ixora undulata Roxb. leaves. Nat Prod Chem Res 2:128. https://doi.org/10.4172/2329-6836.1000128

  • Mohan S, Kiran Kumar K, Sutar V, Saha S, Rowe J, Davies KG (2020) Plant root-exudates recruit hyperparasitic bacteria of phytonematodes by altered cuticle aging: Implications for biological control strategies. Front Plant Sci 11:763

    Article  Google Scholar 

  • Nazir R, Khan M, Masab M, Ur Rehman H, Ur Rauf N, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda dam Kohat. J Pharm Sci Res 7(3):89–97

    CAS  Google Scholar 

  • Nóbrega FM, Santos IS, Cunha MD (2005) Antimicrobial proteins from cowpea root exudates: Inhibitory activity against Fusarium oxysporum and purification of a chitinase-like protein. Plant Soil 272:223–232. https://doi.org/10.1007/s11104-004-4954-1

    CAS  Article  Google Scholar 

  • Ohta T, Hiura T (2016) Root exudation of low-molecular-mass-organic acids by six tree species alters the dynamics of calcium and magnesium in soil. Can J Soil Sci 96(2):199–206. https://doi.org/10.1139/cjss-2015-0063

    CAS  Article  Google Scholar 

  • Okalebo JR, Gathua KW, Woomer PL (2002) Laboratory methods of soil and plant analysis: A working manual. Trop Soil Biol Fertil Program

  • Olahan GS, Sule IO, Garuba T, Salawu YA (2016) Rhizosphere and non-rhizosphere soil mycoflora of Corchorus olitorius (Jute). Sci World J 11(3):23–26

    Google Scholar 

  • Omoigui LO, Kamara AY, Batieno J, Iorlamen T, Kouyate Z, Yirzagla J, Garba U (2018) Guide to cowpea production in West Africa

  • Osuji LC, Nwoye I (2007) An appraisal of the impact of petroleum hydrocarbons on soil fertility: the Owaza experience. Afr J Agric Res 2(7):318–324

    Google Scholar 

  • Parker R (2009) Plant and soil science: Fundamentals & applications. (Cengage Learning)

  • Pedras MS, To QH (2015) Non-indolyl cruciferous phytoalexins: Nasturlexins and tridentatols, a striking convergent evolution of defenses in terrestrial plants and marine animals. Phytochemistry 113:57–63. https://doi.org/10.1016/j.phytochem.2014.07.024

    CAS  Article  PubMed  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2007) The Rhizosphere: Biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton

    Book  Google Scholar 

  • Placek A, Grobelak A, Kacprzak M (2016) Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge. Int J Phytorem 18:605–618

    CAS  Article  Google Scholar 

  • Prasad A, Bhaskara-Rao KV (2011) Physico chemical analysis of textile effluent and decolorization of textile azo dye by Bacillus endophyticus strain VITABR13. IIOAB J 2(2):55–62

    CAS  Google Scholar 

  • Ray S, Mishra S, Bisen K, Singh S, Sarma BK, Singh HB (2018) Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol Res 207:100–107. https://doi.org/10.1016/j.micres.2017.11.011

    CAS  Article  PubMed  Google Scholar 

  • Riazi MR (2021) Oil spill occurrence, simulation, and behavior (1st ed). CRC Press. https://doi.org/10.1201/9780429432156

  • Robson DB (2003) Phytoremediation of hydrocarbon-contaminated soil using plants adapted to the Western Canadian climate. A PhD thesis, submitted to collage of graduate studies and research, University of Saskatchewan, Saskatoon, Canada. Page 23

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: A hidden reality. FAO, Rome, p 142

    Google Scholar 

  • Rohrbacher F, St-Arnaud M (2016) Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agronomy 6(19):1–27. https://doi.org/10.3390/agronomy6010019

    CAS  Article  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    CAS  Article  PubMed  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    CAS  Article  Google Scholar 

  • Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77(3):600–610. https://doi.org/10.1111/j.1574-6941.2011.01150.x

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    CAS  Article  Google Scholar 

  • Singh S, Thorat V, Kaushik CP, Raj K, Eapen S, D'Souza SF (2009) Potential of Chromolaena odorata for phytoremediation of 137Cs from solution and low level nuclear waste. J Hazard Mater 15;162(2–3):743–5

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    CAS  Article  Google Scholar 

  • Sivaram AK, Subashchandrabose SR, Logeshwaran P, Lockington R, Naidu R, Megharaj M (2020) Rhizodegradation of PAHs differentially altered by C3 and C4 Plants. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-72844-4

  • Stringlis IA, de Jonge R, Pieterse CMJ (2019) The age of coumarins in plant–microbe interactions. Plant Cell Physiol 60(7):1405–1419. https://doi.org/10.1093/pcp/pcz076

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Bentum SV, Van Verk MC, Berendsen RL, Peter AHM, Bakker Ivo F, Corné M, Pieterse J (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc Natl Acad Sci 115(22):E5213-E5222. https://doi.org/10.1073/pnas.1722335115

  • Sugiyama A, Yazaki K (2012) Root exudates of legume plants and their involvement in interactions with soil microbes. In: Vivanco JM, Baluška F (eds) Secretions and exudates in biological systems. Signaling and communication in plants. Berlin/Heidelberg: Springer, pp. 27–48

  • Sun L, Ataka M, Kominami Y, Yoshimura K (2017) Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest. Tree Physiol 37:1011–1020. https://doi.org/10.1093/treephys/tpx026

    CAS  Article  PubMed  Google Scholar 

  • Terminski B (2012) Environmentally-induced displacement: theoretical frameworks and current challenges. MISC. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-336548

  • Udom BE, Nuga BO (2011) Characterization of soil health using microbial community and maize germination as bio-indicators in oil-contaminated soil. J Adv Dev Res 2(2):191–197

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    CAS  Article  Google Scholar 

  • Vidonish JE, Kyriacos Z, Caroline AM, Gabriel S, Pedro JJA (2016) Thermal Treatment of hydrocarbon-impacted soils: A review of technology innovation for sustainable remediation. Engineering 2(4):426–437

    CAS  Article  Google Scholar 

  • Voges MJEEE, Bai Y, Schulze-Lefert P, Sattely ES (2018) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. bioRxiv 485581. https://doi.org/10.1101/485581. Now published in Proceedings of the National Academy of Sciences doi: https://doi.org/10.1073/pnas.1820691116

  • Wang Y, Feng J, Lin Q, Lyu X, Wang XG (2013) Effects of crude oil contamination on soil physical and chemical properties in Momoge Wetland of China. Chin Geogra Sci 23(6):708–715. https://doi.org/10.1007/s11769-013-0641-6

    Article  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    CAS  Article  Google Scholar 

  • Wang ZH, Fang H, Chen M (2017a) Effects of root exudates of woody species on the soil anti-erodibility in the rhizosphere in a karst region. China Peerj 5:e3029. https://doi.org/10.7717/peerj.3029

  • Ragnarsdóttir KV, Banwart SA (2015) Soil: The life supporting skin of Earth. Published as an eBook by the University of Sheffield, Sheffield (UK) and the University of Iceland, Reykjavík (Iceland). Available on: https://esdac.jrc.ec.europa.eu/projects/SoilTrec/Documents/SoilTrEC_SoilSchoolBook_FINAL.pdf

  • Wang S, Xu Y, Lin Z, Zhang J, Norbu N, Liu W (2017b) The harm of petroleum-polluted soil and its remediation research. AIP Conf Proc 1864:020222-1–020222-8. https://doi.org/10.1063/1.4993039

  • Wu J, Brookes PC, Jenkinson DS (1996) Evidence for the use of a control in the fumigation-incubation method for measuring microbial biomass carbon in soil. Soil Biol Biochem 28(4–5):511–518

    CAS  Article  Google Scholar 

  • Yan L, Van Le Q, Sonne C, Yang Y, Yang H, Gu H, Peng W (2021) Phytoremediation of radionuclides in soil, sediments and water. J Hazard Mater 407:124771

    CAS  Article  Google Scholar 

  • Yuste LJC, Baldocchi DD, Gershenson A, Goldstein A, Misson L, Wong S (2007) Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob Change Biol 13:2018–2035. https://doi.org/10.1111/j.1365-2486.2007.01415.x

    Article  Google Scholar 

  • Zárate-Valdez JL, Zasoski RJ, Läuchli AE (2006) Short-term effects of moisture content on soil solution pH and soil Eh. Soil Sci 171(5):423–431. https://doi.org/10.1097/01.ss.0000222887.13383.08

    CAS  Article  Google Scholar 

  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S (2018) Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol 3:470–480. https://doi.org/10.1038/s41564-018-0129-3

    CAS  Article  PubMed  Google Scholar 

  • Zhang D, Zhang C, Tang X, Li H, Zhang F, Rengel Z, Whalley WR, Davies WJ, Shen J (2016) Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighboring maize. New Phytol 209(2):823–831. https://doi.org/10.1111/nph.13613

Download references

Acknowledgements

The Authors acknowledge the role of Tertiary Education Trust Fund (TETFUND) Nigeria, for the sponsorship of this research under its IBR grants 2019/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Y. Ismail.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Andrea Schnepf.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farouq, A.A., Ismail, H.Y., Rabah, A.B. et al. Cowpea induced physicochemical and biological rhizosphere changes in hydrocarbon contaminated soil. Plant Soil (2022). https://doi.org/10.1007/s11104-022-05460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-022-05460-y

Keywords

  • Rhizosphere
  • Cowpea
  • Metabolic activities
  • Rhizosphere effect
  • Physicochemical