Blankenship WD, Condon LA, Pyke DA (2019) Hydroseeding tackifiers and dryland moss restoration potential. Restor Ecol. https://doi.org/10.1111/rec.12997
Article
Google Scholar
Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304
CAS
PubMed
Article
Google Scholar
Cai SG, Wu DH, Jabeen Z, Huang YQ, Huang YC, Zhang GP (2013) Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS ONE 8:e69776
CAS
PubMed
PubMed Central
Article
Google Scholar
Cai SG, Chen G, Wang Y, Huang Y, Marchant DB, Wang Y et al (2017) Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiol 174:732–747
CAS
PubMed
PubMed Central
Article
Google Scholar
Cardoso TB, Pinto RT, Paiva LV (2019) Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp. PLoS ONE 14:e0223217
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen RF, Zhang FL, Zhang QM, Sun QB, Dong XY, Shen RF (2012) Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity? J Sci Food Agric 92:995–1000
CAS
PubMed
Article
Google Scholar
Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL et al (2017) Molecular evolution of grass stomata. Trends Plant Sci 22:124–139
CAS
PubMed
Article
Google Scholar
Cogliatti DH, Santa Maria GE (1990) Influx and efflux of phosphorus in roots of wheat plants in non-growth-limiting concentrations of phosphorus. J Exp Bot 41:601–607
CAS
Article
Google Scholar
Dai HX, Shan WN, Zhao J, Zhang GP, Li CD, Wu FB (2011) Difference in response to aluminum stress among Tibetan wild barley genotypes. J Plant Nutr Soil Sci 174:952–960
CAS
Article
Google Scholar
Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L et al (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973
CAS
PubMed
PubMed Central
Article
Google Scholar
Dai HX, Cao FB, Chen XH, Zhang M, Ahmed IM, Chen ZH et al (2013) Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PLoS ONE 8:e63428
CAS
PubMed
PubMed Central
Article
Google Scholar
Dai F, Chen ZH, Wang XL, Li ZF, Jin GL, Wu DZ et al (2014) Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc Natl Acad Sci USA 111:13403–13408
CAS
PubMed
PubMed Central
Article
Google Scholar
Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ (2013) WRKY 46 functions as a transcriptional repressor of ALMT1 regulating aluminum-induced malate secretion in Arabidopsis. Plant J 76:825–835
Du YM, Tian J, Liao H, Bai CJ, Yan XL, Liu GD (2009) Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Ann Bot 103:1239–1247
CAS
PubMed
PubMed Central
Article
Google Scholar
Elliott GC, Lynch J, Lauchli A (1984) Influx and efflux of P in roots of intact maize plants - double-labeling with P-32 and P-33. Plant Physiol 76:336–341
CAS
PubMed
PubMed Central
Article
Google Scholar
Eticha D, Stass A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? J Exp Bot 56:1351–1357
CAS
PubMed
Article
Google Scholar
Feng X, Liu W, Qiu CW, Zeng F, Wang Y, Zhang G, Chen ZH, Wu F (2020) HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J 18:1683–1696
CAS
PubMed
PubMed Central
Article
Google Scholar
Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H et al (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:132–136
Article
CAS
Google Scholar
Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091
CAS
PubMed
Article
Google Scholar
Ganjali MR, Mizani F, Salavati-Niasari M (2003) Novel monohydrogenphosphate sensor based on vanadyl salophen. Anal Chim Acta 481:85–90
CAS
Article
Google Scholar
Gruber BD, Ryan PR, Richardson AE, Tyerman SD, Ramesh S, Hebb DM et al (2010) HvALMT1 from barley is involved in the transport of organic anions. J Exp Bot 61:1455–1467
CAS
PubMed
PubMed Central
Article
Google Scholar
Hassler S, Lemke L, Jung B, Mohlmann T, Kruger F, Schumacher K et al (2012) Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. Plant J 72:732–744
Herburger K, Remias D, Holzinger A (2016) The green alga Zygogonium ericetorum (Zygnematophyceae Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. FEMS Microbiol Ecol 92:fiw103
PubMed
PubMed Central
Article
CAS
Google Scholar
Hossain M, Zhou MX, Mendham NJ (2005) Reliable screening system for aluminium tolerance in barley cultivars. Aust J Agric Res 56:475–482
CAS
Article
Google Scholar
Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N et al (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703
CAS
PubMed
Article
Google Scholar
IGBP-DIS (1998) SoilData(V.0): A program for creating global soil-property databases. IGBP Global Soils Data Task, France
Google Scholar
Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y et al (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and co- regulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905
PubMed
PubMed Central
Article
CAS
Google Scholar
Jiang HX, Tang N, Zheng JG, Lie Y, Chen LS (2009) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137:298–311
CAS
PubMed
Article
Google Scholar
Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake production of reactive oxygen species callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318
CAS
PubMed
Article
Google Scholar
Klug B, Specht A, Horst WJ (2011) Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot 62:5453–5462
CAS
PubMed
PubMed Central
Article
Google Scholar
Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M et al (2014) STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322
CAS
PubMed
Article
Google Scholar
Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260
CAS
Article
Google Scholar
Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493
CAS
PubMed
Article
Google Scholar
Kochian LV, Pineros MA, Liu JP, Magalhaes JV (2015) Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598
CAS
PubMed
Article
Google Scholar
Kopittke PM, Moore KL, Lombi E, Gianoncelli A, Ferguson BJ, Blamey FPC et al (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411
CAS
PubMed
PubMed Central
Article
Google Scholar
Kopittke PM, Menzies NW, Wang P, Blamey FPC (2016) Kinetics and nature of aluminium rhizotoxic effects: a review. J Exp Bot 67:4451–4467
CAS
PubMed
Article
Google Scholar
Lambers H, Finnegan PM, Jost R, Plaxton WC, Shane MW, Stitt M (2015) Phosphorus nutrition in Proteaceae and beyond. Nat Plants 1:1–9
Article
CAS
Google Scholar
Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW et al (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–685
Article
CAS
Google Scholar
Liang C, Pineros MA, Tian J, Yao Z, Sun L, Liu J et al (2013) Low pH aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361
CAS
PubMed
PubMed Central
Article
Google Scholar
Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q et al (2020) Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci 7:1901850
CAS
Article
Google Scholar
Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396
CAS
PubMed
Article
Google Scholar
Liu JL, Yang L, Luan MD, Wang Y, Zhang C, Zhang B et al (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci USA 112:E6571–E6578
CAS
PubMed
PubMed Central
Google Scholar
Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570
Article
Google Scholar
Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278
CAS
PubMed
Article
Google Scholar
Nevo E, Baum B, Beiles A, Johnson DA (1998) Ecological correlates of RAPD DNA diversity of wild barley Hordeum spontaneum in the Fertile Crescent. Genet Resour Crop Evol 45:151–159
Article
Google Scholar
Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14
CAS
PubMed
Article
Google Scholar
Nishiyama T, Sakayama H, De Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK et al (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:448–464
CAS
PubMed
Article
Google Scholar
Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat - Roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597
CAS
PubMed
PubMed Central
Article
Google Scholar
Pettersson S, Strid H (1989) Initial uptake of aluminum in relation to temperature and phosphorus status of wheat (Triticum-Aestivum L) roots. J Plant Physiol 134:672–677
CAS
Article
Google Scholar
Pratt J, Boisson AM, Gout E, Bligny R, Douce R, Aubert S (2009) Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: An in vivo P-31-nuclear magnetic resonance study using methylphosphonate as a Pi analog. Plant Physiol 151:1646–1657
CAS
PubMed
PubMed Central
Article
Google Scholar
Prodhan MA, Finnegan PM, Lambers H (2019) How does evolution in phosphorus-impoverished landscapes impact plant nitrogen and sulfur assimilation? Trends Plant Sci 24:69–82
CAS
PubMed
Article
Google Scholar
Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin XL et al (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703
CAS
PubMed
Article
Google Scholar
Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol 53:27–36
CAS
PubMed
Article
Google Scholar
Runge-Metzger A (1995) In Phosphorus in the global environment: transfers cycles and management. Wiley, New York, 27–42
Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284
CAS
Article
Google Scholar
Ryan PR, Shaff JE, Kochian LV (1992) Aluminum toxicity in roots - Correlation among ionic currents ion fluxes and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol 99:1193–1200
CAS
PubMed
PubMed Central
Article
Google Scholar
Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminum toxicity in roots - an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446
CAS
Article
Google Scholar
Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653
CAS
PubMed
Article
Google Scholar
Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N et al (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294
CAS
PubMed
PubMed Central
Article
Google Scholar
Smart KE, Smith JA, Kilburn MR, Martin BG, Hawes C, Grovenor CR (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63:870–879
CAS
PubMed
Article
Google Scholar
Sposito G (2008) The chemistry of soils. Oxford University Press, Oxford
Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, Bensimon M, Poirier Y (2011) Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. Plant J 66:689–699
CAS
PubMed
Article
Google Scholar
Sun QB, Shen RF, Zhao XQ, Chen RF, Dong XY (2008) Phosphorus enhances Al resistance in Al-resistant lespedeza bicolor but not in Al-sensitive Lcuneata under relatively high Al stress. Ann Bot 102:795–804
CAS
PubMed
PubMed Central
Article
Google Scholar
Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar atlas 66. Crop Sci 42:1541–1546
Article
Google Scholar
Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996
Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M et al (2015) Sensitive to proton rhizotoxicity1 calmodulin binding transcription activator2 and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiol 167:991–1003
CAS
PubMed
PubMed Central
Article
Google Scholar
Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ’Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138
CAS
PubMed
Article
Google Scholar
Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM et al (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276
CAS
PubMed
Article
Google Scholar
Wang T, Yang YH, Ma WH (2008) Storage patterns and environmental controls of soil phosphorus in China. Acta Sci Nat Univ Pekin 44:945–952
CAS
Google Scholar
Wang C, Huang W, Ying YH, Li S, Secco D, Tyerman S et al (2012) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196:139–148
CAS
PubMed
Article
Google Scholar
Wang C, Yue WH, Ying YH, Wang SD, Secco D, Liu Y et al (2015) Rice SPX-Major Facility Superfamily3 a vacuolar phosphate efflux transporter is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:2822–2831
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y et al (2020) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6:95–106
CAS
PubMed
Article
Google Scholar
Wu DZ, Cai SG, Chen MX, Ye LZ, Chen ZH, Zhang HT et al (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8:e55431
CAS
PubMed
PubMed Central
Article
Google Scholar
Wu DM, Shen H, Yokawa K, Baluska F (2014) Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot 65:5305–5315
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang JL, Zhu XF, PengYX, Zheng C, Li GX, Liu Y et al (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892
Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904
Yang ZB, He C, Ma Y, Herde M, Ding Z (2017) Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173:1420–1433
CAS
PubMed
Article
Google Scholar
Yang ZB, Liu G, Liu J, Zhang B, Meng W, Müller B et al (2017) Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis EMBO Rep 18:1213–1230
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang JL, Fan W, Zheng SJ (2019) Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. J Zhejiang Univ Sci B 20:513–527
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang J, Fu XX, Li RQ, Zhao X, Liu Y, Li MH et al (2020) The hornwort genome and early land plant evolution. Nat Plants 6:107–118
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhao C, Wang Y, Chan KX, Marchant DB, Franks PJ, Randall D et al (2019) Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci USA 116:5015–5020
CAS
PubMed
PubMed Central
Article
Google Scholar
Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF et al (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhou J, Jiao FC, Wu ZC, Li YY, Wang XM, He XW et al (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH et al (2012) XTH31 Encoding an in vitro XEH/XET-active Enzyme regulates aluminum sensitivity by modulating in vivo XET action cell wall xyloglucan content and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731–4747