Skip to main content

Evolution of phosphate metabolism in Tibetan wild barley to adapt to aluminum stress

Abstract

Aims

Aluminum (Al) toxicity in acid soil significantly reduces plant growth, agricultural productivity and ecosystem health. The Al-tolerant barley cultivars were reported to mainly rely on the Al-activated efflux of citrate from root apices, but the key mechanisms for Al tolerance may differ for wild relatives of barley adapted to acid soil.

Methods

Here, we investigated plant Al tolerance from evolutionary physiological, molecular, and ecological perspectives.

Results

Phylogenetic analysis of Al tolerance-associated gene families showed that most of these genes were conserved from streptophyte algae to angiosperms, indicating land plants have evolved gradually in adaption to Al-rich acid soil during plant terrestrialization. Vacuolar phosphate transporter SPX-major facility superfamily (SPX-MFS) and inorganic phosphate transporter 1 family (PHT1s) of streptophyte algae showed high genetic similarity to land plants. PHT1s exhibited a significant expand during the evolution from streptophyte algae to liverworts and then eudicots. Al-tolerant Tibetan wild barley accession, XZ29 showed high levels of P-containing glycolytic intermediates including Glu-6-P, Fru-6-P, 3-PGA, 2-PGA and PEP under Al stress. Some primary metabolites were evolutionarily conserved in liverwort, gymnosperm and three tested angiosperms. Furthermore, we found that Al-induced Pi efflux from root elongation zone to chelate rhizosphere Al3+, and immobilization of Al with P at the inner epidermal layer of root mature zone to reduce Al accumulation in the cortical layer in barley.

Conclusions

These results indicated that Tibetan wild barley has evolved unique P transport and metabolism for the adaptation to harsh conditions in eastern and southeastern Tibet where acid soils contain high P.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Blankenship WD, Condon LA, Pyke DA (2019) Hydroseeding tackifiers and dryland moss restoration potential. Restor Ecol. https://doi.org/10.1111/rec.12997

    Article  Google Scholar 

  • Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K et al (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304

    CAS  PubMed  Article  Google Scholar 

  • Cai SG, Wu DH, Jabeen Z, Huang YQ, Huang YC, Zhang GP (2013) Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley. PLoS ONE 8:e69776

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cai SG, Chen G, Wang Y, Huang Y, Marchant DB, Wang Y et al (2017) Evolutionary conservation of ABA signaling for stomatal closure. Plant Physiol 174:732–747

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cardoso TB, Pinto RT, Paiva LV (2019) Analysis of gene co-expression networks of phosphate starvation and aluminium toxicity responses in Populus spp. PLoS ONE 14:e0223217

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen ZH, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen RF, Zhang FL, Zhang QM, Sun QB, Dong XY, Shen RF (2012) Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity? J Sci Food Agric 92:995–1000

    CAS  PubMed  Article  Google Scholar 

  • Chen ZH, Chen G, Dai F, Wang Y, Hills A, Ruan YL et al (2017) Molecular evolution of grass stomata. Trends Plant Sci 22:124–139

    CAS  PubMed  Article  Google Scholar 

  • Cogliatti DH, Santa Maria GE (1990) Influx and efflux of phosphorus in roots of wheat plants in non-growth-limiting concentrations of phosphorus. J Exp Bot 41:601–607

    CAS  Article  Google Scholar 

  • Dai HX, Shan WN, Zhao J, Zhang GP, Li CD, Wu FB (2011) Difference in response to aluminum stress among Tibetan wild barley genotypes. J Plant Nutr Soil Sci 174:952–960

    CAS  Article  Google Scholar 

  • Dai F, Nevo E, Wu DZ, Comadran J, Zhou MX, Qiu L et al (2012) Tibet is one of the centers of domestication of cultivated barley. Proc Natl Acad Sci USA 109:16969–16973

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dai HX, Cao FB, Chen XH, Zhang M, Ahmed IM, Chen ZH et al (2013) Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PLoS ONE 8:e63428

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dai F, Chen ZH, Wang XL, Li ZF, Jin GL, Wu DZ et al (2014) Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proc Natl Acad Sci USA 111:13403–13408

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ding ZJ, Yan JY, Xu XY, Li GX, Zheng SJ (2013) WRKY 46 functions as a transcriptional repressor of ALMT1 regulating aluminum-induced malate secretion in Arabidopsis. Plant J 76:825–835

  • Du YM, Tian J, Liao H, Bai CJ, Yan XL, Liu GD (2009) Aluminium tolerance and high phosphorus efficiency helps Stylosanthes better adapt to low-P acid soils. Ann Bot 103:1239–1247

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Elliott GC, Lynch J, Lauchli A (1984) Influx and efflux of P in roots of intact maize plants - double-labeling with P-32 and P-33. Plant Physiol 76:336–341

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Eticha D, Stass A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium? J Exp Bot 56:1351–1357

    CAS  PubMed  Article  Google Scholar 

  • Feng X, Liu W, Qiu CW, Zeng F, Wang Y, Zhang G, Chen ZH, Wu F (2020) HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J 18:1683–1696

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H et al (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nat Commun 3:132–136

    Article  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    CAS  PubMed  Article  Google Scholar 

  • Ganjali MR, Mizani F, Salavati-Niasari M (2003) Novel monohydrogenphosphate sensor based on vanadyl salophen. Anal Chim Acta 481:85–90

    CAS  Article  Google Scholar 

  • Gruber BD, Ryan PR, Richardson AE, Tyerman SD, Ramesh S, Hebb DM et al (2010) HvALMT1 from barley is involved in the transport of organic anions. J Exp Bot 61:1455–1467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hassler S, Lemke L, Jung B, Mohlmann T, Kruger F, Schumacher K et al (2012) Lack of the Golgi phosphate transporter PHT4;6 causes strong developmental defects constitutively activated disease resistance mechanisms and altered intracellular phosphate compartmentation in Arabidopsis. Plant J 72:732–744

  • Herburger K, Remias D, Holzinger A (2016) The green alga Zygogonium ericetorum (Zygnematophyceae Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. FEMS Microbiol Ecol 92:fiw103

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Hossain M, Zhou MX, Mendham NJ (2005) Reliable screening system for aluminium tolerance in barley cultivars. Aust J Agric Res 56:475–482

    CAS  Article  Google Scholar 

  • Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N et al (2008) Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol 49:691–703

    CAS  PubMed  Article  Google Scholar 

  • IGBP-DIS (1998) SoilData(V.0): A program for creating global soil-property databases. IGBP Global Soils Data Task, France

    Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y et al (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and co- regulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jiang HX, Tang N, Zheng JG, Lie Y, Chen LS (2009) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137:298–311

    CAS  PubMed  Article  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake production of reactive oxygen species callose production and wall rigidification in maize roots. Plant Cell Environ 29:1309–1318

    CAS  PubMed  Article  Google Scholar 

  • Klug B, Specht A, Horst WJ (2011) Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench). J Exp Bot 62:5453–5462

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M et al (2014) STOP2 activates transcription of several genes for Al- and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7:311–322

    CAS  PubMed  Article  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Article  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    CAS  PubMed  Article  Google Scholar 

  • Kochian LV, Pineros MA, Liu JP, Magalhaes JV (2015) Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598

    CAS  PubMed  Article  Google Scholar 

  • Kopittke PM, Moore KL, Lombi E, Gianoncelli A, Ferguson BJ, Blamey FPC et al (2015) Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol 167:1402–1411

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kopittke PM, Menzies NW, Wang P, Blamey FPC (2016) Kinetics and nature of aluminium rhizotoxic effects: a review. J Exp Bot 67:4451–4467

    CAS  PubMed  Article  Google Scholar 

  • Lambers H, Finnegan PM, Jost R, Plaxton WC, Shane MW, Stitt M (2015) Phosphorus nutrition in Proteaceae and beyond. Nat Plants 1:1–9

    Article  CAS  Google Scholar 

  • Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW et al (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574:679–685

    Article  CAS  Google Scholar 

  • Liang C, Pineros MA, Tian J, Yao Z, Sun L, Liu J et al (2013) Low pH aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiol 161:1347–1361

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Liang Z, Geng Y, Ji C, Du H, Wong CE, Zhang Q et al (2020) Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci 7:1901850

    CAS  Article  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    CAS  PubMed  Article  Google Scholar 

  • Liu JL, Yang L, Luan MD, Wang Y, Zhang C, Zhang B et al (2015) A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc Natl Acad Sci USA 112:E6571–E6578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Article  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    CAS  PubMed  Article  Google Scholar 

  • Nevo E, Baum B, Beiles A, Johnson DA (1998) Ecological correlates of RAPD DNA diversity of wild barley Hordeum spontaneum in the Fertile Crescent. Genet Resour Crop Evol 45:151–159

    Article  Google Scholar 

  • Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14

    CAS  PubMed  Article  Google Scholar 

  • Nishiyama T, Sakayama H, De Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK et al (2018) The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174:448–464

    CAS  PubMed  Article  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat - Roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pettersson S, Strid H (1989) Initial uptake of aluminum in relation to temperature and phosphorus status of wheat (Triticum-Aestivum L) roots. J Plant Physiol 134:672–677

    CAS  Article  Google Scholar 

  • Pratt J, Boisson AM, Gout E, Bligny R, Douce R, Aubert S (2009) Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: An in vivo P-31-nuclear magnetic resonance study using methylphosphonate as a Pi analog. Plant Physiol 151:1646–1657

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Prodhan MA, Finnegan PM, Lambers H (2019) How does evolution in phosphorus-impoverished landscapes impact plant nitrogen and sulfur assimilation? Trends Plant Sci 24:69–82

    CAS  PubMed  Article  Google Scholar 

  • Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin XL et al (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703

    CAS  PubMed  Article  Google Scholar 

  • Rae AL, Cybinski DH, Jarmey JM, Smith FW (2003) Characterization of two phosphate transporters from barley; evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol 53:27–36

    CAS  PubMed  Article  Google Scholar 

  • Runge-Metzger A (1995) In Phosphorus in the global environment: transfers cycles and management. Wiley, New York, 27–42

  • Ryan PR, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    CAS  Article  Google Scholar 

  • Ryan PR, Shaff JE, Kochian LV (1992) Aluminum toxicity in roots - Correlation among ionic currents ion fluxes and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol 99:1193–1200

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminum toxicity in roots - an investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446

    CAS  Article  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR et al (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    CAS  PubMed  Article  Google Scholar 

  • Sawaki Y, Iuchi S, Kobayashi Y, Kobayashi Y, Ikka T, Sakurai N et al (2009) STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiol 150:281–294

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Smart KE, Smith JA, Kilburn MR, Martin BG, Hawes C, Grovenor CR (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63:870–879

    CAS  PubMed  Article  Google Scholar 

  • Sposito G (2008) The chemistry of soils. Oxford University Press, Oxford

  • Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, Bensimon M, Poirier Y (2011) Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. Plant J 66:689–699

    CAS  PubMed  Article  Google Scholar 

  • Sun QB, Shen RF, Zhao XQ, Chen RF, Dong XY (2008) Phosphorus enhances Al resistance in Al-resistant lespedeza bicolor but not in Al-sensitive Lcuneata under relatively high Al stress. Ann Bot 102:795–804

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Taylor GJ, McDonald-Stephens JL, Hunter DB, Bertsch PM, Elmore D, Rengel Z, Reid RJ (2000) Direct measurement of aluminum uptake and distribution in single cells of Chara corallina. Plant Physiol 123:987–996

  • Tokizawa M, Kobayashi Y, Saito T, Kobayashi M, Iuchi S, Nomoto M et al (2015) Sensitive to proton rhizotoxicity1 calmodulin binding transcription activator2 and other transcription factors are involved in aluminum-activated malate transporter1 expression. Plant Physiol 167:991–1003

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ’Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    CAS  PubMed  Article  Google Scholar 

  • Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM et al (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    CAS  PubMed  Article  Google Scholar 

  • Wang T, Yang YH, Ma WH (2008) Storage patterns and environmental controls of soil phosphorus in China. Acta Sci Nat Univ Pekin 44:945–952

    CAS  Google Scholar 

  • Wang C, Huang W, Ying YH, Li S, Secco D, Tyerman S et al (2012) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196:139–148

    CAS  PubMed  Article  Google Scholar 

  • Wang C, Yue WH, Ying YH, Wang SD, Secco D, Liu Y et al (2015) Rice SPX-Major Facility Superfamily3 a vacuolar phosphate efflux transporter is involved in maintaining phosphate homeostasis in rice. Plant Physiol 169:2822–2831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y et al (2020) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6:95–106

    CAS  PubMed  Article  Google Scholar 

  • Wu DZ, Cai SG, Chen MX, Ye LZ, Chen ZH, Zhang HT et al (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8:e55431

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wu DM, Shen H, Yokawa K, Baluska F (2014) Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. J Exp Bot 65:5305–5315

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang JL, Zhu XF, PengYX, Zheng C, Li GX, Liu Y et al (2011) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

  • Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z (2014) TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 26:2889–2904

  • Yang ZB, He C, Ma Y, Herde M, Ding Z (2017) Jasmonic acid enhances Al-induced root growth inhibition. Plant Physiol 173:1420–1433

    CAS  PubMed  Article  Google Scholar 

  • Yang ZB, Liu G, Liu J, Zhang B, Meng W, Müller B et al (2017) Synergistic action of auxin and cytokinin mediates aluminum-induced root growth inhibition in Arabidopsis EMBO Rep 18:1213–1230

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang JL, Fan W, Zheng SJ (2019) Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. J Zhejiang Univ Sci B 20:513–527

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhang J, Fu XX, Li RQ, Zhao X, Liu Y, Li MH et al (2020) The hornwort genome and early land plant evolution. Nat Plants 6:107–118

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhao C, Wang Y, Chan KX, Marchant DB, Franks PJ, Randall D et al (2019) Evolution of chloroplast retrograde signaling facilitates green plant adaptation to land. Proc Natl Acad Sci USA 116:5015–5020

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF et al (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhou J, Jiao FC, Wu ZC, Li YY, Wang XM, He XW et al (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhu XF, Shi YZ, Lei GJ, Fry SC, Zhang BC, Zhou YH et al (2012) XTH31 Encoding an in vitro XEH/XET-active Enzyme regulates aluminum sensitivity by modulating in vivo XET action cell wall xyloglucan content and aluminum binding capacity in Arabidopsis. Plant Cell 24:4731–4747

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (31771687) and China Agriculture Research System (CARS-05). S.C is supported by Kuayue Project in College of Agriculture and Biotechnology, Zhejiang University. Z.H.C is supported by the Australian Research Council (FT210100366, DE1401011143). We thank Prof. Dongfa Sun of Huazhong Agricultural University for providing Tibetan wild barley accessions. We thank Western Sydney University for the SIMS and Confocal Bio-imaging facility. We thank Lijuan Mao and Zhiwei Ge (985-Institute of Agrobiology and Environmental Sciences, Zhejiang University) and Linda Westmoreland, Dr Sumedha Dharmaratne, Dr Anya Sali, and David Randall (Western Sydney University) for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.C., G.Z. and Z.H.C. designed and supervised this study. S.C. and Y.H. performed bioinformatic analysis and metabolome analysis. Y.L. and L.W. conducted the physiological experiments. R.L. guided SIMS analysis. S.C., G.Z. and Z.H.C. wrote and revised the manuscript with inputs from D.W., P.R.R. and M.Z.

Corresponding authors

Correspondence to Shengguan Cai or Zhong-Hua Chen.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Responsible Editor: Sergey Shabala.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlight

Evolution and regulation of cellular phosphorus transport and metabolism facilitates Tibetan wild barley to adapt to low pH and high P soils on the Tibetan plateau.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 6.11 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Huang, Y., Liu, Y. et al. Evolution of phosphate metabolism in Tibetan wild barley to adapt to aluminum stress. Plant Soil (2022). https://doi.org/10.1007/s11104-022-05444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-022-05444-y

Keywords

  • Acid soil
  • Gene family evolution
  • Hordeum spontaneum
  • Phylogenetic analysis
  • Phosphate metabolism
  • Phosphate transporters