Skip to main content

Crop diversification reinforces soil microbiome functions and soil health

Abstract

Intensive agriculture with continuous monocropping and massive chemical inputs has adversely affected belowground microbial composition and functions, resulting in soil sickness and negative feedbacks to crop growth and production. Crop diversification has been highlighted to address these problems in a more sustainable and ecological way by alterations of the temporal and spatial interactions between above- and belowground biota. However, the underlying mechanisms of crop diversity in alleviating monoculture soil sickness remain elusive. Here we propose that soil microbial networks could be a key entry point to understand the intercropping benefits on soil fertility and pathogen or pest control. Last, we raise some promising directions facing future challenges which might be beneficial to future agricultural managements and food security, and how to design an optimized cropping system to construct a healthier soil.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

It is not applicable in this opinion.

References

  • Ball B, Bingham I, Rees R, Watson C, Litterick A (2005) The role of crop rotations in determining soil structure and crop growth conditions. Can J Soil Sci 85:557–577

    Article  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:567–576

    CAS  PubMed  Article  Google Scholar 

  • Banerjee S, Walder F, Buchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J 13:1722–1736

    PubMed  PubMed Central  Article  Google Scholar 

  • Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351

    PubMed  Article  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    CAS  PubMed  Article  Google Scholar 

  • Bascompte J (2010) Structure and dynamics of ecological networks. Science 329:765–766

    CAS  PubMed  Article  Google Scholar 

  • Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71

    PubMed  Article  Google Scholar 

  • Boer WD (2017) Upscaling of fungal-bacterial interactions: from the lab to the field. Curr Opin Microbiol 37:35–41

    PubMed  Article  Google Scholar 

  • Boer WD, Wagenaar AM, Gunnewiek PJAK, Veen JAV (2007) In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol Ecol 59:177–185

    PubMed  Article  CAS  Google Scholar 

  • Boer WD, Li XG, Meisner A, Garbeva P (2019) Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 95:fiz105

    PubMed  Article  CAS  Google Scholar 

  • Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PP, Jones HG, Karley AJ (2015) Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol 206:107–117

    PubMed  Article  Google Scholar 

  • Bullock DG (1992) Crop-rotation. Crit Rev Plant Sci 11:309–326

    Article  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    CAS  PubMed  Article  Google Scholar 

  • Chang X, Yan L, Naeem M, Khaskheli MI, Zhang H, Gong G, Zhang M, Song C, Yang W, Liu T (2020) Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens 9:211

    PubMed Central  Article  Google Scholar 

  • Chen C, Chen HYH, Chen X, Huang Z (2019) Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

  • Chen DL, Wang XX, Zhang W, Zhou ZG, Ding CF, Liao YWK, Li XG (2020) Persistent organic fertilization reinforces soil-borne disease suppressiveness of rhizosphere bacterial community. Plant Soil 452:313–328

    CAS  Article  Google Scholar 

  • Cohen JE (2003) Human population: the next half century. Science 302:1172–1175

    CAS  PubMed  Article  Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XG, Zhang FS, Van Der Werf W (2015) Intercropping enhances soil carbon and nitrogen. Glob Chang Biol 21:1715–1726

    PubMed  Article  Google Scholar 

  • Cong W-F, Suriyagoda LDB, Lambers H (2020) Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends Plant Sci 25:967–975

    CAS  PubMed  Article  Google Scholar 

  • Cong W-F, Zhang C, Li C, Wang G, Zhang F (2021) Designing diversified cropping systems in China: theory, approaches and implementation. Front Agric Sci Eng 8:362–372

    Google Scholar 

  • Cook RJ (2003) Take-all of wheat. Physiol Mol Plant P 62:73–86

    Article  Google Scholar 

  • Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350:663–666

    CAS  PubMed  Article  Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:1–8

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang J-T, Eisenhauer N, Singh BK, Maestre FT (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nat Clim Chang 10:550–554

    Article  Google Scholar 

  • Denier J, Faucon M-P, Dulaurent A-M, Guidet J, Kervroëdan L, Lamerre J, Houben D (2022) Earthworm communities and microbial metabolic activity and diversity under conventional, feed and biogas cropping systems as affected by tillage practices. Appl Soil Ecol 169:104232

    Article  Google Scholar 

  • Ding W, Cong WF, Lambers H (2021) Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends Ecol Evol 36:899–906

    PubMed  Article  Google Scholar 

  • Ding W, Cong W-F, Lambers H (2022) Response to Zhong and Zhou: P-acquisition strategies and total soil C sequestration. Trends Ecol Evol 37:14–15

    PubMed  Article  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A, Partsch S, Sabais AC, Scherber C, Steinbeiss S, Weigelt A, Weisser WW, Scheu S (2010) Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–496

    CAS  PubMed  Article  Google Scholar 

  • Fan FL, Zhang FS, Qu Z, Lu YH (2008) Plant carbon partitioning below ground in the presence of different neighboring species. Soil Biol Biochem 40:2266–2272

    CAS  Article  Google Scholar 

  • Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu Y-g, Chu H (2021) Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J 15:550–561

    CAS  PubMed  Article  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    CAS  PubMed  Article  Google Scholar 

  • Feng Y, Chen R, Hu J, Zhao F, Wang J, Chu H, Zhang J, Dolfing J, Lin X (2015) Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biol Biochem 81:186–194

    CAS  Article  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    CAS  PubMed  Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK (2005) Global consequences of land use. Science 309:570–574

    CAS  PubMed  Article  Google Scholar 

  • Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol 96:314–322

    CAS  Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    CAS  PubMed  Article  Google Scholar 

  • Gao X, Wu M, Xu R, Wang X, Pan R, Kim H-J, Liao H (2014) Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS One 9:e95031

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Garbeva P, Boer WD (2009) Inter-specific interactions between carbon-limited soil bacteria affect behavior and gene expression. Microb Ecol 58:36–46

    CAS  PubMed  Article  Google Scholar 

  • Guo Y, Luo H, Wang L, Xu M, Wan Y, Chou M, Shi P, Wei G (2021) Multifunctionality and microbial communities in agricultural soils regulate the dynamics of a soil-borne pathogen. Plant Soil 461:309–322

    CAS  Article  Google Scholar 

  • Hacker N, Ebeling A, Gessler A, Gleixner G, González Macé O, de Kroon H, Lange M, Mommer L, Eisenhauer N, Ravenek J (2015) Plant diversity shapes microbe-rhizosphere effects on P mobilisation from organic matter in soil. Ecol Lett 18:1356–1365

    PubMed  Article  Google Scholar 

  • Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME (2021) Environmental stress destabilizes microbial networks. ISME J 15:1722–1734

    PubMed  Article  Google Scholar 

  • Hol WH, Garbeva P, Hordijk C et al (2015) Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96:2042–2048

    PubMed  Article  Google Scholar 

  • Honvault N, Houben D, Firmin S, Meglouli H, Laruelle F, Fontaine J, Lounès-Hadj Sahraoui A, Coutu A, Lambers H, Faucon MP (2021) Interactions between below-ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition. Funct Ecol 35:1603–1619

    Article  Google Scholar 

  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, Yu JQ (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242

    CAS  PubMed  Article  Google Scholar 

  • Jia Y, Zhai G, Zhu S, Liu X, Schmid B, Wang Z, Ma K, Feng X (2021) Plant and microbial pathways driving plant diversity effects on soil carbon accumulation in subtropical forest. Soil Biol Biochem 161:108375

    CAS  Article  Google Scholar 

  • Jian J, Du X, Reiter MS, Stewart RD (2020) A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem 143:107735

    CAS  Article  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595

    CAS  Article  Google Scholar 

  • Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258

    CAS  PubMed  Article  Google Scholar 

  • Kraus E, Voeten M, Lambers H (2002) Allelopathic and autotoxic interactions in selected populations of Lolium perenne grown in monoculture and mixed culture. Funct Plant Biol 29:1465–1473

    PubMed  Article  Google Scholar 

  • Lambers H (2021) Phosphorus acquisition and utilization in plants. Annu Rev Plant Biol 73:102720–125738

    Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vazquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:1–8

    Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68

    CAS  PubMed  Article  Google Scholar 

  • Li S, Wu F (2018) Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front Microbiol 9:1521

    PubMed  PubMed Central  Article  Google Scholar 

  • Li C, Li X, Kong W, Wu Y, Wang J (2010) Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423–433

    CAS  Article  Google Scholar 

  • Li L, Tilman D, Lambers H, Zhang F-S (2014a) Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol 203:63–69

    PubMed  Article  CAS  Google Scholar 

  • Li XG, Ding CF, Hua K, Zhang TL, Zhang YN, Zhao L, Yang YR, Liu JG, Wang XX (2014b) Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biol Biochem 78:149–159

    CAS  Article  Google Scholar 

  • Li B, Li Y-Y, Wu H-M, Zhang F-F, Li C-J, Li X-X, Lambers H, Li L (2016) Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proc Natl Acad Sci U S A 113:6496–6501

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Li XG, Boer WD, Zhang YN, Ding CF, Zhang TL, Wang XX (2018a) Suppression of soil-borne Fusarium pathogens of peanut by intercropping with the medicinal herb Atractylodes lancea. Soil Biol Biochem 116:120–130

    CAS  Article  Google Scholar 

  • Li F, Chen L, Redmile-Gordon M, Zhang J, Zhang C, Ning Q, Li W (2018b) Mortierella elongata's roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad Dev 29:1642–1651

    Article  Google Scholar 

  • Li X, Jousset A, de Boer W, Carrión VJ, Zhang T, Wang X, Kuramae EE (2019) Legacy of land use history determines reprogramming of plant physiology by soil microbiome. ISME J 13:738–751

    CAS  PubMed  Article  Google Scholar 

  • Li C, Hoffland E, Kuyper TW, Yu Y, Zhang C, Li H, Zhang F, van der Werf W (2020a) Syndromes of production in intercropping impact yield gains. Nat Plants 6:653–660

    PubMed  Article  Google Scholar 

  • Li XG, Panke-Buise K, Yao XD, Coleman-Derr D, Ding CF, Wang XX, Ruan HH (2020b) Peanut plant growth was altered by monocropping-associated microbial enrichment of rhizosphere microbiome. Plant Soil 446:655–669

    CAS  Article  Google Scholar 

  • Li XG, Garbeva P, Liu XJ et al (2020c) Volatile-mediated antagonism of soil bacterial communities against fungi. Environ Microbiol 22:1025–1035

    CAS  PubMed  Article  Google Scholar 

  • Li M, Pommier T, Yin Y, Wang J, Gu S, Jousset A, Keuskamp J, Wang H, Wei Z, Xu Y, Shen Q (2022) Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition. ISME J 16:868–875

  • Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, Wang CB, Wu JP, Liu XR, Tian XL, Wang Y, Li J-P, Wang Y, Xia H-Y, Mei P-P, Wang XF, Zhao JH, Yu R-P, Zhang WP, Che ZX, Gui LG, Callaway RM, Tilman D, Li L (2021) Long-term increased grain yield and soil fertility from intercropping. Nature Sustainabil 4:943–950

    Article  Google Scholar 

  • Liu X, Zhang J, Gu T, Zhang W, Shen Q, Yin S, Qiu H (2014) Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS One 9:e86610

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Lu L, Yin S, Liu X, Zhang W, Gu T, Shen Q, Qiu H (2013) Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture. Soil Biol Biochem 65:186–194

    CAS  Article  Google Scholar 

  • Lutz W, Sanderson W, Scherbov S (2001) The end of world population growth. Nature 412:543–545

    CAS  PubMed  Article  Google Scholar 

  • McDaniel MD, Tiemann LK, Grandy AS (2014) Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol Appl 24:560–570

    CAS  PubMed  Article  Google Scholar 

  • Moser T, Förster B, Frankenbach S, Marques R, Römbke J, Schmidt P, Höfer H (2012) Nematode assemblages in banana (Musa acuminata) monocultures and banana plantations with Juçara palms (Euterpe edulis) in the southern Mata Atlântica, Brazil. Nematology 14:371–384

    Article  Google Scholar 

  • Phoenix GK, Johnson DA, Muddimer SP, Leake JR, Cameron DD (2020) Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nat Plants 6:349–354

    CAS  PubMed  Article  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    CAS  PubMed  Article  Google Scholar 

  • Poudel R, Jumpponen A, Schlatter DC et al (2016) Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology 106:1083–1096

    CAS  PubMed  Article  Google Scholar 

  • Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A (2020) Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob Chang Biol 26:669–681

    PubMed  Article  Google Scholar 

  • Renard D, Tilman D (2019) National food production stabilized by crop diversity. Nature 571:257–260

    CAS  PubMed  Article  Google Scholar 

  • Savian F, Ginaldi F, Musetti R, Sandrin N, Tarquini G, Pagliari L, Firrao G, Martini M, Ermacora P (2020) Studies on the aetiology of kiwifruit decline: interaction between soil-borne pathogens and waterlogging. Plant Soil 456:113–128

    CAS  Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    CAS  PubMed  Article  Google Scholar 

  • Schulz-Bohm K, Zweers H, Boer WD, Garbeva P (2015) A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front Microbiol 6:1212

    PubMed  PubMed Central  Article  Google Scholar 

  • Shipton P (1977) Monoculture and soilborne plant pathogens. Annu Rev Phytopathol 15:387–407

    Article  Google Scholar 

  • Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci U S A 108:3648–3652

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tamburini G, Bommarco R, Wanger TC, Kremen C, van der Heijden MG, Liebman M, Hallin S (2020) Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci Adv 6:eaba1715

    PubMed  PubMed Central  Article  Google Scholar 

  • Tang L, Xia Y, Fan C, Kou J, Wu F, Li W, Pan K (2020) Control of Fusarium wilt by wheat straw is associated with microbial network changes in watermelon rhizosphere. Sci Rep 10:12736

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, Reich PB, Scheu S, Tilman D, Ai F, Guo H, Ji R, Pierce S, Ramirez NG, Richter AN, Steinauer K, Strecker T, Vogel A, Eisenhauer N (2015) Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob Change Biol 21:4076–4085

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    PubMed  Article  CAS  Google Scholar 

  • Tian X-L, Wang C-B, Bao X-G, Wang P, Li X-F, Yang S-C, Ding G-C, Christie P, Li L (2019) Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant Soil 436:173–192

    CAS  Article  Google Scholar 

  • Tyc O, Zweers H, Boer WD, Garbeva P (2015) Volatiles in inter-specific bacterial interactions. Front Microbiol 6:1412

    PubMed  PubMed Central  Article  Google Scholar 

  • van der Heijden MGA, Hartmann M (2016) Networking in the plant microbiome. PLoS Biol 14:e1002378

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    PubMed  Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang Z-g, Bao X-g, Li X-f, Jin X, Zhao J-h, Sun J-h, Christie P, Li L (2015) Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil 391:265–282

    CAS  Article  Google Scholar 

  • Wang GZ, Li HG, Christie P, Zhang FS, Zhang JL, Bever JD (2017) Plant-soil feedback contributes to intercropping overyielding by reducing the negative effect of take-all on wheat and compensating the growth of faba bean. Plant Soil 415:1–12

    CAS  Article  Google Scholar 

  • Wang G, Schultz P, Tipton A, Zhang J, Zhang F, Bever JD (2019) Soil microbiome mediates positive plant diversity-productivity relationships in late successional grassland species. Ecol Lett 22:1221–1232

    PubMed  Article  Google Scholar 

  • Wang G, Bei S, Li J, Bao X, Zhang J, Schultz PA, Li H, Li L, Zhang F, Bever JD, Zhang J (2021) Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping. J Appl Ecol 58:496–506

    Article  Google Scholar 

  • Wei Z, Yang T, Friman V-P, Xu Y, Shen Q, Jousset A (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat Commun 6:1–9

    Google Scholar 

  • Westphal A, Xing L (2011) Soil suppressiveness against the disease complex of the soybean cyst nematode and sudden death syndrome of soybean. Phytopathology 101:878–886

    PubMed  Article  Google Scholar 

  • Wu H, Xiang W, Ouyang S, Forrester DI, Zhou B, Chen L, Ge T, Lei P, Chen L, Zeng Y (2019) Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Funct Ecol 33:1549–1560

    Article  Google Scholar 

  • Yang Y, Tilman D, Furey G, Lehman C (2019) Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat Commun 10:1–7

    Article  CAS  Google Scholar 

  • Zhang Z, Chai X, Tariq A, Zeng F, Li X, Graciano C (2021) Intercropping systems modify desert plant-associated microbial communities and weaken host effects in a hyper-arid desert. Front Microbiol 12:754453

    PubMed  PubMed Central  Article  Google Scholar 

  • Zhao Y, Wu L, Chu L, Yang Y, Li Z, Azeem S, Zhang Z, Fang C, Lin W (2015) Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f. sp. heterophylla mediated by its root exudates in a consecutive monoculture system. Sci Rep 5:1–7

    Google Scholar 

  • Zhao J, Yang Y, Zhang K, Jeong J, Zeng Z, Zang H (2020) Does crop rotation yield more in China? A meta-analysis. Field Crops Res 245:107659

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Program of Advanced Discipline Construction in Beijing (Agriculture Green Development), the Program of Introducing Talents of Discipline to Universities (Plant-Soil Interactions innovative research platform 1031-00100701), the Program of the National Natural Science Foundation of China (Nos. 32072676, 42011045, 32122056, 42011045, 32122056, 31430014, 31872182) and the Chinese Universities Scientific Fund (2021TC060).

Author information

Authors and Affiliations

Authors

Contributions

GW and WC conceived and designed the structure of the opinion. All authors wrote and edited the manuscript.

Corresponding author

Correspondence to Wen-Feng Cong.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Philip John White.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Li, X., Xi, X. et al. Crop diversification reinforces soil microbiome functions and soil health. Plant Soil (2022). https://doi.org/10.1007/s11104-022-05436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11104-022-05436-y

Keywords

  • Monoculture
  • Crop diversity
  • Soil sickness
  • Soil microbiome
  • Microbial network