Skip to main content

Afforestation of abandoned agricultural lands for carbon sequestration: how does it compare with natural succession?

Abstract

Purpose

The objective of this study was to compare the accumulation over time of organic carbon (C) in soil and vegetation of abandoned agricultural lands left to natural vegetation succession or afforested with planted white spruce (Picea glauca (Moench) Voss) in Abitibi (Canada). The agricultural areas of this region originated from the clearing of forested lands in the late 19th -early 20th centuries. The aim was to determine whether afforestation of such lands is a relevant tool for C sequestration and climate change mitigation.

Methods

Field and laboratory measures for tree, shrub and herbaceous strata, woody debris and soil down to a 50 cm depth were carried out on abandoned agricultural lands that were either left to natural succession or planted, to determine total C stocks. The experimental design was a chronosequence covering 50 years, with sites representing various stages following agriculture abandonment and plantation.

Results

There was no significant difference in the amount of C stored by lands that were either planted or left to natural succession over a 50-year time period. Both types of lands were found to be net C sinks. Abandoned lands left to natural succession stored 1.3 times more C in the soil compared with afforested lands, while the latter stored twice as much C in aboveground biomass.

Conclusions

These results put into perspective the use of afforestation to increase land C sinks and suggest that natural succession might also play a role in land management practices in the context of climate change mitigation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The data used in this work are openly available at https://doi.org/10.6084/m9.figshare.16725457.

Code availability

Not applicable.

References

  • Agence régionale de mise en valeur des forêts privées de l’Abitibi (2014) Plan de protection et de mise en valeur des forêts privées. de la région de l’Abitibi, pp 13. Available at: http://www.arfpa.ca/documents/pages/plan-de-protection-et-de-mise-en-valeur-desforets.pdf

  • Andrieux B, Beguin J, Bergeron Y, Grondin P, Paré D (2018) Drivers of postfire soil organic carbon accumulation in the boreal forest. Glob Change Biol 24:4797–4815. https://doi.org/10.1111/gcb.14365

    Article  Google Scholar 

  • Bárcena TG, Kiær LP, Vesterdal L, Stefánsdóttir HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Change Biol 20:2393–2405. https://doi.org/10.1111/gcb.12576

    Article  Google Scholar 

  • Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79

    CAS  Article  Google Scholar 

  • Benjamin K, Domon G, Bouchard A (2005) Vegetation composition and succession of abandoned farmland: effects of ecological, historical and spatial factors. Landscape Ecol 20:627–647

    Article  Google Scholar 

  • Bernier PY, Gauthier S, Jean P-O, Manka F, Boulanger Y, Beaudoin A, Guindon L (2016) Mapping local effects of forest properties on fire risk across Canada. Forests 7. https://doi.org/10.3390/f7080157

  • Bright RM, Zhao K, Jackson RB, Cherubini F (2015) Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob Change Biol 21:3246–3266. https://doi.org/10.1111/gcb.12951

    Article  Google Scholar 

  • Carson WP, Pickett STA (1990) Role of resources and disturbance in the organization of an old-field plant community. Ecology 71:226–238. https://doi.org/10.2307/1940262

    Article  Google Scholar 

  • Chomel M, DesRochers A, Baldy V, Larchevêque M, Gauquelin T (2014) Non-additive effects of mixing hybrid poplar and white spruce on aboveground and soil carbon storage in boreal plantations. For Ecol Manag 328:292–299. https://doi.org/10.1016/j.foreco.2014.05.048

    Article  Google Scholar 

  • Diouf PN, Stevanovic T, Cloutier A, Fang C-H, Blanchet P, Koubaa A, Mariotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257:3558–3564. https://doi.org/10.1016/j.apsusc.2010.11.074

    CAS  Article  Google Scholar 

  • Drever CR, Cook-Patton Susan C, Akhter F, Badiou Pascal H, Chmura Gail L, Davidson Scott J, Desjardins Raymond L, Dyk A, Fargione Joseph E, Fellows M, Filewod B, Hessing-Lewis M, Jayasundara S, Keeton William S, Kroeger T, Lark Tyler J, Le E, Leavitt Sara M, LeClerc M-E, Lemprière Tony C, Metsaranta J, McConkey B, Neilson E, St-Laurent Guillaume P, Puric-Mladenovic D, Rodrigue S, Soolanayakanahally Raju Y, Spawn Seth A, Strack M, Smyth C, Thevathasan N, Voicu M, Williams Christopher A, Woodbury Peter B, Worth Devon E, Xu Z, Yeo S, Kurz Werner A (2021) Natural climate solutions for Canada. Sci Adv 7:eabd6034. https://doi.org/10.1126/sciadv.abd6034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Drobyshev I, Gewehr S, Berninger F, Bergeron Y (2013) Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J Ecol 101:231–242. https://doi.org/10.1111/1365-2745.12007

    Article  Google Scholar 

  • Federer CA, Turcotte DE, Smith CT (1993) The organic fraction–bulk density relationship and the expression of nutrient content in forest soils. Can J For Res 23:1026–1032. https://doi.org/10.1139/x93-131

    CAS  Article  Google Scholar 

  • Foote RL, Grogan P (2010) Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems 13:795–812

    CAS  Article  Google Scholar 

  • Forster EJ, Healey JR, Dymond C, Styles D (2021) Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nat Commun 12:3831. https://doi.org/10.1038/s41467-021-24084-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Girard-Côté F (2007) Portrait territorial: Abitibi-Témiscamingue. Ministère des Ressources naturelles et de la Faune, Direction générale de l’Abitibi-Témiscamingue. Direction régionale de la gestion du territoire public de l’Abitibi-Témiscamingue, Rouyn-Noranda

    Google Scholar 

  • Government of Canada (2021) 2 billion trees commitment 2021. https://www.canada.ca/en/campaign/2-billion-trees.html. Accessed Apr 12 2022

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Hassegawa M, Savard M, Lenz PRN, Duchateau E, Gélinas N, Bousquet J, Achim A (2020) White spruce wood quality for lumber products: priority traits and their enhancement through tree improvement. Forestry 93:16–37. https://doi.org/10.1093/forestry/cpz050

    Article  Google Scholar 

  • Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13:299–313. https://doi.org/10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2

    Article  Google Scholar 

  • Inouye RS, Huntly NJ, Tilman D, Tester JR, Stillwell M, Zinnel KC (1987) Old-field succession on a Minnesota sand plain. Ecology 68:12–26. https://doi.org/10.2307/1938801

    Article  Google Scholar 

  • IPCC (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. 896 p. Available at: https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES.pdf

  • Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504. https://doi.org/10.1016/j.ecolmodel.2008.10.018

    Article  Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453. https://doi.org/10.1111/j.1365-2486.2009.01930.x

    Article  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. https://doi.org/10.1038/ncomms7707

    CAS  Article  PubMed  Google Scholar 

  • Lecina-Diaz J, Alvarez A, Regos A, Drapeau P, Paquette A, Messier C, Retana J (2018) The positive carbon stocks–biodiversity relationship in forests: co-occurrence and drivers across five subclimates. Ecol Appl 28:1481–1493. https://doi.org/10.1002/eap.1749

    Article  PubMed  Google Scholar 

  • Lenth R, Core Team R (2019) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.2. Available at: https://cran.r-project.org/web/packages/emmeans/index.html

  • Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. https://doi.org/10.1111/j.1469-8137.2012.04150.x

    CAS  Article  PubMed  Google Scholar 

  • Marchais M, Arseneault D, Bergeron Y (2020) Composition changes in the Boreal Mixedwood forest of Western Quebec since Euro-Canadian settlement. Front Ecol Evol 8:126. https://doi.org/10.3389/fevo.2020.00126

    Article  Google Scholar 

  • Matthews G, Britain G, Commission F (1993) The carbon content of trees. Forestry Commission, Edinburgh

    Google Scholar 

  • Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau J-P, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vanguelova EI, Vesterdal L (2020) Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For Ecol Manag 466:118127. https://doi.org/10.1016/j.foreco.2020.118127

    Article  Google Scholar 

  • Mensah S, Veldtman R, Assogbadjo AE, Glèlè Kakaï R, Seifert T (2016) Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol Evol 6:7546–7557. https://doi.org/10.1002/ece3.2525

    Article  PubMed  PubMed Central  Google Scholar 

  • Messier C, Parent S, Bergeron Y (1998) Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. J Veg Sci 9:511–520. https://doi.org/10.2307/3237266

    Article  Google Scholar 

  • Messier C, Puettmann KJ, Coates KD (2013) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, Abingdon

  • Ministère des Forêts de la Faune et des Parcs (2018) Mapping of the 5th Ecoforestry Inventory of Southern Quebec - Methods and associated data [In French: Cartographie du 5e inventaire écoforestier du Québec méridional — Méthodes et données associées]. Ministère des Forêts, de la Faune et des Parcs, Secteur des forêts, Direction des inventaires forestiers Quebec City, Canada

  • Mobley ML, Lajtha K, Kramer MG, Bacon AR, Heine PR, Richter DD (2015) Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Change Biol 21:986–996

    Article  Google Scholar 

  • Nave LE, DeLyser K, Domke GM, Janowiak MK, Ontl TA, Sprague E, Walters BR, Swanston CW (2021) Land use and management effects on soil carbon in U.S. Lake States, with emphasis on forestry, fire, and reforestation. Ecol Appl :e2356. https://doi.org/10.1002/eap.2356

  • National Forest Inventory (2021) Canada’s National Forest Inventory - National standards for ground plots compilation procedures. Version 2.4, pp 88. Available at: https://nfi.nfis.org/resources/groundplot/GP_compilation_procedures_2.4.pdf

  • Nilsson S, Schopfhauser W (1995) The carbon-sequestration potential of a global afforestation program. Clim Change 30:267–293. https://doi.org/10.1007/BF01091928

    CAS  Article  Google Scholar 

  • Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. https://doi.org/10.1111/j.1466-8238.2010.00592.x

    Article  Google Scholar 

  • Paquin N (1979) Histoire de l’Abitibi-Témiscamingue. Collège du Nord-Ouest, Rouyn-Noranda

    Google Scholar 

  • Paré D, Bernier P, Lafleur B, Titus BD, Thiffault E, Maynard DG, Guo X (2013) Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests. Can J For Res 43:599–608. https://doi.org/10.1139/cjfr-2012-0454

    CAS  Article  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257. https://doi.org/10.1016/S0378-1127(01)00740-X

    Article  Google Scholar 

  • Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies, Kanagawa Prefecture

  • Pickett ST (1989) Space-for-time substitution as an alternative to long-term studies. Long-term studies in ecology. Springer, Berlin

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021) nlme: linear and nonlinear mixed effects models. R package 3:1–141

    Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  • Prégent G, Picher G, Auger I (2010) Tarif de cubage, tables de rendement et modèles de croissance pour les plantations d’épinette blanche au Québec. Ministère des ressources naturelles et de la faune, Direction de la recherche forestière, Québec

    Google Scholar 

  • Rompré M, Carrier D (1997) Étude pédologique des sols défrichés de l’Abitibi-Témiscamingue. Centre de recherche et d’expérimentation en sols. Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, Québec

    Google Scholar 

  • Ruiz-Benito P, Gómez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA (2014) Diversity increases carbon storage and tree productivity in Spanish forests. Glob Ecol Biogeogr 23:311–322. https://doi.org/10.1111/geb.12126

    Article  Google Scholar 

  • Saucier JP, Robitaille A, Grondin P, Bergeron JF, Gosselin J (2011) Ecological regions of Southern Quebec, 4th edition. [In French: Les régions écologiques du Québec méridional, 4e version]. Map 1 / 1 250 000. Ministère des Ressources naturelles et de la Faune du Québec. Available at: https://mffp.gouv.qc.ca/documents/forets/inventaire/carte-regions-ecologiques.pdf

  • Senez-Gagnon F, Thiffault E, Paré D, Achim A, Bergeron Y (2018) Dynamics of detrital carbon pools following harvesting of a humid eastern Canadian balsam fir boreal forest. For Ecol Manag 430:33–42

    Article  Google Scholar 

  • Smyth C, Rampley G, Lemprière TC, Schwab O, Kurz WA (2017) Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy 9:1071–1084. https://doi.org/10.1111/gcbb.12389

    CAS  Article  Google Scholar 

  • Smyth CE, Kurz WA, Neilson ET, Stinson G (2013) National-scale estimates of forest root biomass carbon stocks and associated carbon fluxes in Canada. Glob Biogeochem Cycles 27:1262–1273. https://doi.org/10.1002/2012GB004536

    CAS  Article  Google Scholar 

  • Smyth CE, Stinson G, Neilson E, Lemprière TC, Hafer M, Rampley GJ, Kurz WA (2014) Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11:3515–3529. https://doi.org/10.5194/bg-11-3515-2014

    Article  Google Scholar 

  • Steinbeiss S, Beßler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949. https://doi.org/10.1111/j.1365-2486.2008.01697.x

    Article  Google Scholar 

  • Thiffault N, Roy V, Prégent G, Cyr G, Jobidon R, Ménétrier J (2003) Silviculture of conifer plantations in Quebec [In French: La sylviculture des plantations résineuses au Québec]. Nat Can 127:63–80

    Google Scholar 

  • Tremblay S, Ouimet R (2013) White spruce plantations on abandoned agricultural land: are they more effective as C sinks than natural succession? Forests 4. https://doi.org/10.3390/f4041141

  • Voicu MF, Shaw C, Kurz WA, Huffman T, Liu J, Fellows M (2017) Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada. J Environ Manag 193:318–325. https://doi.org/10.1016/j.jenvman.2017.02.019

    CAS  Article  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Philippe Duval, forest technician, for his invaluable help for site selection, documentation and sampling; Félix Baril-Veillette and Émile Lacroix, for the inestimable help during field sampling; and Nicole Drouin and her team for the carbon analyses at the Organic and Inorganic Chemistry Laboratory of the Direction de la recherche forestière. This study was funded by the Quebec Ministry of Forests, Wildlife, and Parks (research project 142332167), and by the Natural Sciences and Engineering Research Council through Undergraduate Student Research Awards to F. Baril-Veillette and É. Lacroix and through a Discovery Grant to E. Thiffault (grant number RGPIN-2018-05755).

Funding

This publication was funded by the Quebec Ministry of Forests, Wildlife, and Parks (research project 142332167), and by the Natural Science and Engineering Research Council through Undergraduate Student Research Awards to F. Baril-Veillette and É. Lacroix and through a Discovery Grant to E. Thiffault (grant number RGPIN-2018-05755).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization : E.T, S.T, Y.B.

Formal analysis : M.T., R.O.

Funding acquisition: S.T.

Methodology : M.T, E.T, Y.B, R.O, S.T.

Project administration : S.T.

Writing (original draft) : M.T.

Writing (review and editing) : M.T, E.T, Y.B, R.O, S.T.

Corresponding author

Correspondence to Evelyne Thiffault.

Ethics declarations

Conflicts of interest/Competing interests

Not applicable. 

Consent for publication

All authors have read and agreed to the published version of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Timothy J. Fahey.

Sylvie Tremblay is retired from Direction de la Recherche Forestière, Quebec Ministry of Forest, Wildlife and Parks, Quebec City, Canada

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 855 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thibault, M., Thiffault, E., Bergeron, Y. et al. Afforestation of abandoned agricultural lands for carbon sequestration: how does it compare with natural succession?. Plant Soil 475, 605–621 (2022). https://doi.org/10.1007/s11104-022-05396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05396-3

Keywords

  • Afforestation
  • Abandoned agricultural lands
  • Soil
  • Carbon
  • White spruce
  • Clayey soils