Abstract
Purpose
The objective of this study was to compare the accumulation over time of organic carbon (C) in soil and vegetation of abandoned agricultural lands left to natural vegetation succession or afforested with planted white spruce (Picea glauca (Moench) Voss) in Abitibi (Canada). The agricultural areas of this region originated from the clearing of forested lands in the late 19th -early 20th centuries. The aim was to determine whether afforestation of such lands is a relevant tool for C sequestration and climate change mitigation.
Methods
Field and laboratory measures for tree, shrub and herbaceous strata, woody debris and soil down to a 50 cm depth were carried out on abandoned agricultural lands that were either left to natural succession or planted, to determine total C stocks. The experimental design was a chronosequence covering 50 years, with sites representing various stages following agriculture abandonment and plantation.
Results
There was no significant difference in the amount of C stored by lands that were either planted or left to natural succession over a 50-year time period. Both types of lands were found to be net C sinks. Abandoned lands left to natural succession stored 1.3 times more C in the soil compared with afforested lands, while the latter stored twice as much C in aboveground biomass.
Conclusions
These results put into perspective the use of afforestation to increase land C sinks and suggest that natural succession might also play a role in land management practices in the context of climate change mitigation.
This is a preview of subscription content, access via your institution.




Data availability
The data used in this work are openly available at https://doi.org/10.6084/m9.figshare.16725457.
Code availability
Not applicable.
References
Agence régionale de mise en valeur des forêts privées de l’Abitibi (2014) Plan de protection et de mise en valeur des forêts privées. de la région de l’Abitibi, pp 13. Available at: http://www.arfpa.ca/documents/pages/plan-de-protection-et-de-mise-en-valeur-desforets.pdf
Andrieux B, Beguin J, Bergeron Y, Grondin P, Paré D (2018) Drivers of postfire soil organic carbon accumulation in the boreal forest. Glob Change Biol 24:4797–4815. https://doi.org/10.1111/gcb.14365
Bárcena TG, Kiær LP, Vesterdal L, Stefánsdóttir HM, Gundersen P, Sigurdsson BD (2014) Soil carbon stock change following afforestation in Northern Europe: a meta-analysis. Glob Change Biol 20:2393–2405. https://doi.org/10.1111/gcb.12576
Bastin J-F, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365:76–79
Benjamin K, Domon G, Bouchard A (2005) Vegetation composition and succession of abandoned farmland: effects of ecological, historical and spatial factors. Landscape Ecol 20:627–647
Bernier PY, Gauthier S, Jean P-O, Manka F, Boulanger Y, Beaudoin A, Guindon L (2016) Mapping local effects of forest properties on fire risk across Canada. Forests 7. https://doi.org/10.3390/f7080157
Bright RM, Zhao K, Jackson RB, Cherubini F (2015) Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Glob Change Biol 21:3246–3266. https://doi.org/10.1111/gcb.12951
Carson WP, Pickett STA (1990) Role of resources and disturbance in the organization of an old-field plant community. Ecology 71:226–238. https://doi.org/10.2307/1940262
Chomel M, DesRochers A, Baldy V, Larchevêque M, Gauquelin T (2014) Non-additive effects of mixing hybrid poplar and white spruce on aboveground and soil carbon storage in boreal plantations. For Ecol Manag 328:292–299. https://doi.org/10.1016/j.foreco.2014.05.048
Diouf PN, Stevanovic T, Cloutier A, Fang C-H, Blanchet P, Koubaa A, Mariotti N (2011) Effects of thermo-hygro-mechanical densification on the surface characteristics of trembling aspen and hybrid poplar wood veneers. Appl Surf Sci 257:3558–3564. https://doi.org/10.1016/j.apsusc.2010.11.074
Drever CR, Cook-Patton Susan C, Akhter F, Badiou Pascal H, Chmura Gail L, Davidson Scott J, Desjardins Raymond L, Dyk A, Fargione Joseph E, Fellows M, Filewod B, Hessing-Lewis M, Jayasundara S, Keeton William S, Kroeger T, Lark Tyler J, Le E, Leavitt Sara M, LeClerc M-E, Lemprière Tony C, Metsaranta J, McConkey B, Neilson E, St-Laurent Guillaume P, Puric-Mladenovic D, Rodrigue S, Soolanayakanahally Raju Y, Spawn Seth A, Strack M, Smyth C, Thevathasan N, Voicu M, Williams Christopher A, Woodbury Peter B, Worth Devon E, Xu Z, Yeo S, Kurz Werner A (2021) Natural climate solutions for Canada. Sci Adv 7:eabd6034. https://doi.org/10.1126/sciadv.abd6034
Drobyshev I, Gewehr S, Berninger F, Bergeron Y (2013) Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J Ecol 101:231–242. https://doi.org/10.1111/1365-2745.12007
Federer CA, Turcotte DE, Smith CT (1993) The organic fraction–bulk density relationship and the expression of nutrient content in forest soils. Can J For Res 23:1026–1032. https://doi.org/10.1139/x93-131
Foote RL, Grogan P (2010) Soil carbon accumulation during temperate forest succession on abandoned low productivity agricultural lands. Ecosystems 13:795–812
Forster EJ, Healey JR, Dymond C, Styles D (2021) Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nat Commun 12:3831. https://doi.org/10.1038/s41467-021-24084-x
Girard-Côté F (2007) Portrait territorial: Abitibi-Témiscamingue. Ministère des Ressources naturelles et de la Faune, Direction générale de l’Abitibi-Témiscamingue. Direction régionale de la gestion du territoire public de l’Abitibi-Témiscamingue, Rouyn-Noranda
Government of Canada (2021) 2 billion trees commitment 2021. https://www.canada.ca/en/campaign/2-billion-trees.html. Accessed Apr 12 2022
Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360. https://doi.org/10.1046/j.1354-1013.2002.00486.x
Hassegawa M, Savard M, Lenz PRN, Duchateau E, Gélinas N, Bousquet J, Achim A (2020) White spruce wood quality for lumber products: priority traits and their enhancement through tree improvement. Forestry 93:16–37. https://doi.org/10.1093/forestry/cpz050
Hooker TD, Compton JE (2003) Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol Appl 13:299–313. https://doi.org/10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2
Inouye RS, Huntly NJ, Tilman D, Tester JR, Stillwell M, Zinnel KC (1987) Old-field succession on a Minnesota sand plain. Ecology 68:12–26. https://doi.org/10.2307/1938801
IPCC (2019) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. 896 p. Available at: https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES.pdf
Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trofymow JA, Metsaranta J, Apps MJ (2009) CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504. https://doi.org/10.1016/j.ecolmodel.2008.10.018
Laganière J, Angers DA, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Change Biol 16:439–453. https://doi.org/10.1111/j.1365-2486.2009.01930.x
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez PG, Malik AA, Roy J, Scheu S, Steinbeiss S, Thomson BC, Trumbore SE, Gleixner G (2015) Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun 6:6707. https://doi.org/10.1038/ncomms7707
Lecina-Diaz J, Alvarez A, Regos A, Drapeau P, Paquette A, Messier C, Retana J (2018) The positive carbon stocks–biodiversity relationship in forests: co-occurrence and drivers across five subclimates. Ecol Appl 28:1481–1493. https://doi.org/10.1002/eap.1749
Lenth R, Core Team R (2019) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.2. Available at: https://cran.r-project.org/web/packages/emmeans/index.html
Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. https://doi.org/10.1111/j.1469-8137.2012.04150.x
Marchais M, Arseneault D, Bergeron Y (2020) Composition changes in the Boreal Mixedwood forest of Western Quebec since Euro-Canadian settlement. Front Ecol Evol 8:126. https://doi.org/10.3389/fevo.2020.00126
Matthews G, Britain G, Commission F (1993) The carbon content of trees. Forestry Commission, Edinburgh
Mayer M, Prescott CE, Abaker WEA, Augusto L, Cécillon L, Ferreira GWD, James J, Jandl R, Katzensteiner K, Laclau J-P, Laganière J, Nouvellon Y, Paré D, Stanturf JA, Vanguelova EI, Vesterdal L (2020) Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For Ecol Manag 466:118127. https://doi.org/10.1016/j.foreco.2020.118127
Mensah S, Veldtman R, Assogbadjo AE, Glèlè Kakaï R, Seifert T (2016) Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol Evol 6:7546–7557. https://doi.org/10.1002/ece3.2525
Messier C, Parent S, Bergeron Y (1998) Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. J Veg Sci 9:511–520. https://doi.org/10.2307/3237266
Messier C, Puettmann KJ, Coates KD (2013) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, Abingdon
Ministère des Forêts de la Faune et des Parcs (2018) Mapping of the 5th Ecoforestry Inventory of Southern Quebec - Methods and associated data [In French: Cartographie du 5e inventaire écoforestier du Québec méridional — Méthodes et données associées]. Ministère des Forêts, de la Faune et des Parcs, Secteur des forêts, Direction des inventaires forestiers Quebec City, Canada
Mobley ML, Lajtha K, Kramer MG, Bacon AR, Heine PR, Richter DD (2015) Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Change Biol 21:986–996
Nave LE, DeLyser K, Domke GM, Janowiak MK, Ontl TA, Sprague E, Walters BR, Swanston CW (2021) Land use and management effects on soil carbon in U.S. Lake States, with emphasis on forestry, fire, and reforestation. Ecol Appl :e2356. https://doi.org/10.1002/eap.2356
National Forest Inventory (2021) Canada’s National Forest Inventory - National standards for ground plots compilation procedures. Version 2.4, pp 88. Available at: https://nfi.nfis.org/resources/groundplot/GP_compilation_procedures_2.4.pdf
Nilsson S, Schopfhauser W (1995) The carbon-sequestration potential of a global afforestation program. Clim Change 30:267–293. https://doi.org/10.1007/BF01091928
Paquette A, Messier C (2011) The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob Ecol Biogeogr 20:170–180. https://doi.org/10.1111/j.1466-8238.2010.00592.x
Paquin N (1979) Histoire de l’Abitibi-Témiscamingue. Collège du Nord-Ouest, Rouyn-Noranda
Paré D, Bernier P, Lafleur B, Titus BD, Thiffault E, Maynard DG, Guo X (2013) Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests. Can J For Res 43:599–608. https://doi.org/10.1139/cjfr-2012-0454
Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257. https://doi.org/10.1016/S0378-1127(01)00740-X
Penman J, Gytarsky M, Hiraishi T, Krug T, Kruger D, Pipatti R, Buendia L, Miwa K, Ngara T, Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies, Kanagawa Prefecture
Pickett ST (1989) Space-for-time substitution as an alternative to long-term studies. Long-term studies in ecology. Springer, Berlin
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021) nlme: linear and nonlinear mixed effects models. R package 3:1–141
Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–327. https://doi.org/10.1046/j.1365-2486.2000.00308.x
Prégent G, Picher G, Auger I (2010) Tarif de cubage, tables de rendement et modèles de croissance pour les plantations d’épinette blanche au Québec. Ministère des ressources naturelles et de la faune, Direction de la recherche forestière, Québec
Rompré M, Carrier D (1997) Étude pédologique des sols défrichés de l’Abitibi-Témiscamingue. Centre de recherche et d’expérimentation en sols. Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec, Québec
Ruiz-Benito P, Gómez-Aparicio L, Paquette A, Messier C, Kattge J, Zavala MA (2014) Diversity increases carbon storage and tree productivity in Spanish forests. Glob Ecol Biogeogr 23:311–322. https://doi.org/10.1111/geb.12126
Saucier JP, Robitaille A, Grondin P, Bergeron JF, Gosselin J (2011) Ecological regions of Southern Quebec, 4th edition. [In French: Les régions écologiques du Québec méridional, 4e version]. Map 1 / 1 250 000. Ministère des Ressources naturelles et de la Faune du Québec. Available at: https://mffp.gouv.qc.ca/documents/forets/inventaire/carte-regions-ecologiques.pdf
Senez-Gagnon F, Thiffault E, Paré D, Achim A, Bergeron Y (2018) Dynamics of detrital carbon pools following harvesting of a humid eastern Canadian balsam fir boreal forest. For Ecol Manag 430:33–42
Smyth C, Rampley G, Lemprière TC, Schwab O, Kurz WA (2017) Estimating product and energy substitution benefits in national-scale mitigation analyses for Canada. GCB Bioenergy 9:1071–1084. https://doi.org/10.1111/gcbb.12389
Smyth CE, Kurz WA, Neilson ET, Stinson G (2013) National-scale estimates of forest root biomass carbon stocks and associated carbon fluxes in Canada. Glob Biogeochem Cycles 27:1262–1273. https://doi.org/10.1002/2012GB004536
Smyth CE, Stinson G, Neilson E, Lemprière TC, Hafer M, Rampley GJ, Kurz WA (2014) Quantifying the biophysical climate change mitigation potential of Canada’s forest sector. Biogeosciences 11:3515–3529. https://doi.org/10.5194/bg-11-3515-2014
Steinbeiss S, Beßler H, Engels C, Temperton VM, Buchmann N, Roscher C, Kreutziger Y, Baade J, Habekost M, Gleixner G (2008) Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob Change Biol 14:2937–2949. https://doi.org/10.1111/j.1365-2486.2008.01697.x
Thiffault N, Roy V, Prégent G, Cyr G, Jobidon R, Ménétrier J (2003) Silviculture of conifer plantations in Quebec [In French: La sylviculture des plantations résineuses au Québec]. Nat Can 127:63–80
Tremblay S, Ouimet R (2013) White spruce plantations on abandoned agricultural land: are they more effective as C sinks than natural succession? Forests 4. https://doi.org/10.3390/f4041141
Voicu MF, Shaw C, Kurz WA, Huffman T, Liu J, Fellows M (2017) Carbon dynamics on agricultural land reverting to woody land in Ontario, Canada. J Environ Manag 193:318–325. https://doi.org/10.1016/j.jenvman.2017.02.019
Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x
Acknowledgements
The authors thank Philippe Duval, forest technician, for his invaluable help for site selection, documentation and sampling; Félix Baril-Veillette and Émile Lacroix, for the inestimable help during field sampling; and Nicole Drouin and her team for the carbon analyses at the Organic and Inorganic Chemistry Laboratory of the Direction de la recherche forestière. This study was funded by the Quebec Ministry of Forests, Wildlife, and Parks (research project 142332167), and by the Natural Sciences and Engineering Research Council through Undergraduate Student Research Awards to F. Baril-Veillette and É. Lacroix and through a Discovery Grant to E. Thiffault (grant number RGPIN-2018-05755).
Funding
This publication was funded by the Quebec Ministry of Forests, Wildlife, and Parks (research project 142332167), and by the Natural Science and Engineering Research Council through Undergraduate Student Research Awards to F. Baril-Veillette and É. Lacroix and through a Discovery Grant to E. Thiffault (grant number RGPIN-2018-05755).
Author information
Authors and Affiliations
Contributions
Conceptualization : E.T, S.T, Y.B.
Formal analysis : M.T., R.O.
Funding acquisition: S.T.
Methodology : M.T, E.T, Y.B, R.O, S.T.
Project administration : S.T.
Writing (original draft) : M.T.
Writing (review and editing) : M.T, E.T, Y.B, R.O, S.T.
Corresponding author
Ethics declarations
Conflicts of interest/Competing interests
Not applicable.Â
Consent for publication
All authors have read and agreed to the published version of the manuscript.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Responsible Editor: Timothy J. Fahey.
Sylvie Tremblay is retired from Direction de la Recherche Forestière, Quebec Ministry of Forest, Wildlife and Parks, Quebec City, Canada
Supplementary Information
Below is the link to the electronic supplementary material.
ESM 1
(DOCX 855 KB)
Rights and permissions
About this article
Cite this article
Thibault, M., Thiffault, E., Bergeron, Y. et al. Afforestation of abandoned agricultural lands for carbon sequestration: how does it compare with natural succession?. Plant Soil 475, 605–621 (2022). https://doi.org/10.1007/s11104-022-05396-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11104-022-05396-3