Skip to main content

Advertisement

Log in

Soil phytoliths in Larix gmelinii forest and their relationships with soil properties

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Ecosystems with higher latitude in the northern hemisphere are expected to face the largest loss of soil organic carbon (C) due to global warming. The concentrations, distributions, morphology of phytoliths and their associations with soil properties show fundamental significance in actually assessing the potential C sequestration of forest soils.

Methods

We examined soil phytolith contents and soil properties of Larix gmelinii forest from the Greater Khingan Mountains. ANOVA, bivariate correlation, regression analysis, principal component analysis and redundancy analysis were conducted to interpret the relations between soil phytoliths and soil properties.

Results

The soil phytoliths in the studied area were mainly elongate in shape with a mean content of 19.1 g kg−1. The phytoliths had a significant correlation with phosphorus rather than potassium and nitrogen, while they had no correlation with soil water content. Soil phytolith storage in the cold temperate zone (41.0 t ha−1) was significantly higher than in the tropical and subtropical zones.

Conclusions

Soil phytolith storage in Larix gmelinii forest is affected by soil properties and climate, which have a certain relation with soil organic C, pH, nutrients and mineral elements. The C sequestration capacity of soils could be elevated by the increase of phytolith contents in the cold temperate coniferous forest. Analyses of small-sized and fragile phytogenic Si structures are urgently needed in future work as they are the most important drivers of Si cycling in terrestrial biogeosystems, which is very important to accurately quantify the phytoliths contents and the pool of C sequestered in phytoliths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexandre A, Bouvet M, Abbadie L (2011) The role of savannas in the terrestrial Si cycle: A case-study from Lamto, Ivory Coast. Global Planet Change 78:162–169. https://doi.org/10.1016/j.gloplacha.2011.06.007

    Article  Google Scholar 

  • Alexandre A, Crespin J, Sylvestre F, Sonzogni C, Hilbert DW (2012) The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool. Climate of the past 8:307–324

    Article  Google Scholar 

  • Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682. https://doi.org/10.1016/S0016-7037(97)00001-X

    Article  CAS  Google Scholar 

  • An X (2016) Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld 25:116–127

    Article  Google Scholar 

  • Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878

    Article  CAS  Google Scholar 

  • Blinnikov MS, Bagent CM, Reyerson PE (2013) Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quatern Int 287:101–113. https://doi.org/10.1016/j.quaint.2011.12.023

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Borrelli N, Alvarez MF, Osterrieth ML, Marcovecchio JE (2010) Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in Typical Argiudolls of the Pampean Plain, Argentina—a preliminary study. J Soils Sed 10:983–994. https://doi.org/10.1007/s11368-010-0205-7

    Article  CAS  Google Scholar 

  • Chen C, Huang Z, Jiang P, Chen J, Wu J (2018) Belowground phytolith-occluded carbon of monopodial bamboo in China: an overlooked carbon stock. Front Plant Sci 9:1615. https://doi.org/10.3389/fpls.2018.01615

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelis J-T, Delvaux B (2016) Soil processes drive the biological silicon feedback loop. Funct Ecol 30:1298–1310. https://doi.org/10.1111/1365-2435.12704

    Article  Google Scholar 

  • Cornelis J-T, J R, A I, B D, (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97:231–245

    Article  CAS  Google Scholar 

  • De Rito M, Fernandez Honaine M, Osterrieth M, Morel E (2018) Silicophytoliths from a Pampean native tree community (Celtis ehrenbergiana community) and their representation in the soil assemblage. Rev Palaeobot Palynol 257:19–34. https://doi.org/10.1016/j.revpalbo.2018.06.002

    Article  Google Scholar 

  • Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54:955–969

    Article  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci USA 91:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang J, Brown SA, Tang Y, Nabuurs GJ, Wang X, Shen H (2006) Overestimated biomass carbon pools of the northern mid- and high latitude forests. Clim Change 74:355–368

    Article  CAS  Google Scholar 

  • Fang J, Chen A, Peng C, Zhao S, Ci L (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292:2320–2322

    Article  CAS  PubMed  Google Scholar 

  • Fishkis O, Ingwersen J, Lamers M, Denysenko D, Streck T (2010) Phytolith transport in soil: A field study using fluorescent labelling. Geoderma 157:27–36

    Article  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier J (2009) Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chem Geol 258:197–206

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951

    Article  CAS  Google Scholar 

  • Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2008) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951

    Article  CAS  Google Scholar 

  • Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: Application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758. https://doi.org/10.1016/j.gca.2007.11.010

    Article  CAS  Google Scholar 

  • Goodale CL, Apps MJ, Birdsey R, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz WA, Liu S (2002) Forest carbon sinks in the northern hemisphere. Ecol Appl 12:891–899

    Article  Google Scholar 

  • Guo F, Song Z, Sullivan L, Wang H, Liu X, Wang X, Li Z, Zhao Y (2015) Enhancing phytolith carbon sequestration in rice ecosystems through basalt powder amendment. Science Bulletin 60:591–597

    Article  CAS  Google Scholar 

  • Han N, Yang Y, Gao Y, Hao Z, Tian J, Yang T, Song X (2018) Determining phytolith-occluded organic carbon sequestration using an upgraded optimized extraction method: indicating for a missing carbon pool. Environ Sci Pollut Res 25:24507–24515. https://doi.org/10.1007/s11356-018-2706-7

    Article  CAS  Google Scholar 

  • Hart DM, Humphreys GS (2003) Phytolith depth functions in surface regolith materials. In: IC Roach (ed) Advances in regolith: proceedings of the CRC LEME Regional Regolith Symposia. CRC LEME, Adelaide.

  • Hart TC (2016) Issues and directions in phytolith analysis. J Archaeol Sci 68:24–31

    Article  Google Scholar 

  • He S (2016) Variation and stability of phytolith-occluded carbon in typical forest-soil ecosystems in tropics and subtropics. Zhejiang A & F University, Hangzhou

    Google Scholar 

  • Heimann M, Reichstein M (2008) Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289–292

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ (2016) The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. J Archaeol Sci 68:62–69

    Article  CAS  Google Scholar 

  • Hodson MJ (2019) The Relative Importance of Cell Wall and Lumen Phytoliths in Carbon Sequestration in Soil: A Hypothesis. Front Earth Sci 7:167. https://doi.org/10.3389/feart.2019.00167

    Article  Google Scholar 

  • Huang Z, Jiang P, Chang S, Zhang Y, Ying Y (2014) Production of carbon occluded in phytolith is season-dependent in a bamboo forest in subtropical China. PLoS ONE 9:1–6

    Google Scholar 

  • Huang Z, Li Y, Jiang P, Chang SX, Song Z, Liu J, Zhou G (2015) Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils. Sci Rep 4:3602–3602

    Article  Google Scholar 

  • Jin F, Yang H, Zhao Q (2000) Advaces on soil organic carbon storage and its influencing factors. Soils 32:11–17

    CAS  Google Scholar 

  • Kaczorek D, Puppe D, Busse J, Sommer M (2019) Effects of phytolith distribution and characteristics on extractable silicon fractions in soils under different vegetation – An exploratory study on loess. Geoderma 356: 113917.

  • Keller C, Guntzer F, Barboni D, Labreuche J, Meunier J-D (2012) Impact of agriculture on the Si biogeochemical cycle: Input from phytolith studie. CR Geosci 344:739–746

    Article  CAS  Google Scholar 

  • Kirill YK, Vladimir FK, Victor PS, Costas AV (2004) Global ecodynamics: a multidimentsional analysis. Springer, Berlin

    Google Scholar 

  • Kirschbaum MUF (2004) Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob Change Biol 10:1870–1877

    Article  Google Scholar 

  • Klein RL, Geis JW (1978) Biogenic silica in the Pinaceae. Soil Sci 126:145–156

    Article  Google Scholar 

  • Korner C (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Law BE, Harmon ME (2011) Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Management 2:73–84

    Article  Google Scholar 

  • Li B, Song Z, Wang H, Li Z, Jiang P, Zhou G (2014) Lithological control on phytolith carbon sequestration in moso bamboo forests. Sci Rep 4:5262–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Vogeler I, Schwendenmann L (2019) Conversion from tussock grassland to pine forest: effect on soil phytoliths and phytolith-occluded carbon (PhytOC). J Soils Sediments 19:1260–1271

    Article  CAS  Google Scholar 

  • Li Z, Delvaux B (2019) Phytolith-rich biochar: A potential Si fertilizer in desilicated soils. GCB Bioenergy 11:1264–1282

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Li B (2013a) The production and accumulation of phytolith-occluded carbon in Baiyangdian reed wetland of China. Appl Geochem 37:117–124. https://doi.org/10.1016/j.apgeochem.2013.07.012

    Article  CAS  Google Scholar 

  • Li Z, Song Z, Parr JF, Wang H (2013b) Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant Soil 370:615–623. https://doi.org/10.1007/s11104-013-1661-9

    Article  CAS  Google Scholar 

  • Lin W (2015) Study on phytolith-occluded carbon in soil under important forest kinds. Zhejiang A & F University, Hangzhou

    Google Scholar 

  • Ma JF (2003) Functions of silicon in higher plants. Prog Mol Subcell Biol 33:127–147

    Article  CAS  PubMed  Google Scholar 

  • Neumann D (2003) Silicon in plants. Silicon biomineralization. Prog Mol Subcell Biol 3:149–160

    Article  Google Scholar 

  • Nguyen ATQ, Nguyen AM, Nguyen LN, Nguyen HX, Tran TM, Tran PD, Dultz S, Nguyen MN (2021) Effects of CO2 and temperature on phytolith dissolution. Sci Total Environ 772:145469. https://doi.org/10.1016/j.scitotenv.2021.145469

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MN, Dultz S, Guggenberger G (2014) Effects of pretreatment and solution chemistry on solubility of rice-straw phytoliths. J Plant Nutr Soil Sci 177:349–359

    Article  CAS  Google Scholar 

  • Nguyen MN, Dultz S, Meharg AA, Pham QV, Hoang AN, Dam TTN, Nguyen VT, Nguyen KM, Nguyen HX, Nguyen NT (2019a) Phytolith content in Vietnamese paddy soils in relation to soil properties. Geoderma 333:200–213

    Article  CAS  Google Scholar 

  • Nguyen MN, Meharg A, Carey M, Dultz S, Marone F, Cichy SB, Tran CT, Le GH, Mai NT, Nguyen TTH (2019b) Fern, Dicranopteris linearis, derived phytoliths in soil: Morphotypes, solubility and content in relation to soil properties. Eur J Soil Sci 70:507–517

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton RA, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  • Parr JF (2002) A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Rev Palaeobot Palynol 120:315–336

    Article  Google Scholar 

  • Parr JF, Sullivan LA (2005) Soil carbon sequestration in phytoliths. Soil Biol Biochem 37:117–124

    Article  CAS  Google Scholar 

  • Parr JF, Sullivan LA (2011) Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil 342:165–171

    Article  CAS  Google Scholar 

  • Parr JF, Sullivan LA, Chen B, Ye G, Zheng W (2010) Carbon bio-sequestration within the phytoliths of economic bamboo species. Glob Change Biol 16:2661–2667

    Article  Google Scholar 

  • Parr JF, Sullivan LA, Quirk R (2009) Sugarcane phytoliths: Encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech 11:17–21

    Article  CAS  Google Scholar 

  • Pierzynski GM (2009) Methods of phosphorus analysis for soils, sediments, residuals, and waters. North Carolina State University.

  • Piperno DR (1988) Phytolith analysis : an archaeological and geological perspective. Academic Press, San Diego

    Google Scholar 

  • Piperno DR (2006) Phytoliths: a comprehensive Guide for archaeologists and paleoecologists. AltaMira Press, New York

    Google Scholar 

  • Prajapati K (2016) Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Appl Ecol Environ Res 14:265–281

    Article  Google Scholar 

  • Puppe D, Höhn A, Kaczorek D, Wanner M, Wehrhan M, Sommer M (2017) How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils? Implications from a study of a 10-year-old soil-plant system. Biogeosciences 14:5239–5252

    Article  CAS  Google Scholar 

  • Puppe D, Leue M (2018) Physicochemical surface properties of different biogenic silicon structures: Results from spectroscopic and microscopic analyses of protistic and phytogenic silica. Geoderma 330:212–220

    Article  CAS  Google Scholar 

  • Qiao N, Schaefer D, Blagodatskaya E, Zou X, Xu X, Kuzyakov Y (2014) Labile carbon retention compensates for CO2 released by priming in forest soils. Glob Change Biol 20:1943–1954

    Article  Google Scholar 

  • Rajendiran S, Coumar MV, Kundu S, Ajay DML, Rao AS (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci 103:911–920

    Google Scholar 

  • Rashid I, Mir SH, Zurro D, Dar RA, Reshi ZA (2019) Phytoliths as proxies of the past. Earth Sci Rev 194:234–250

    Article  CAS  Google Scholar 

  • Sangster A, Hodson M, Huang C (2000) X-ray microanalytical studies of mineral composition in cell walls of needle tissues of American larch [Larix laricina (Du Roi) K. Koch] and European larch [L. decidua (L.) Mill.]. L’arbre: 160–167.

  • Sangster AG, Hodson MJ, Tubb HJ (2001) Silicon deposition in higher plants. In: Datnoff, LE, Snyder, GH, Kornd€orfer, GH (Eds), Silicon in Agriculture. Elsevier Science.

  • Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5:81–91

    Article  CAS  Google Scholar 

  • Solomonova MY, Blinnikov MS, Silantyeva MM, Speranskaja NY (2019) Influence of Moisture and Temperature Regimes on the Phytolith Assemblage Composition of Mountain Ecosystems of the Mid Latitudes: A Case Study From the Altay Mountains. Front Ecol Evol 7:1–22

    Article  Google Scholar 

  • Sommer M, Jochheim H, Höhn A, Breuer B, Zagorski Z, Busse J, Barkusky D, Meier K, Puppe D, Wanner M (2013) Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools. Biogeosciences 10:4991–5007

    Article  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329. https://doi.org/10.1002/jpln.200521981

    Article  CAS  Google Scholar 

  • Song Z, Liu H, Li B, Yang X (2013a) The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration. Glob Change Biol 19:2907–2915

    Article  Google Scholar 

  • Song Z, Liu H, Si Y, Yin Y (2012a) The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Glob Change Biol 18:3647–3653

    Article  Google Scholar 

  • Song Z, McGrouther K, Wang H (2016) Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth-Sci Rev 158:19–30. https://doi.org/10.1016/j.earscirev.2016.04.007

    Article  CAS  Google Scholar 

  • Song Z, Parr JF, Guo F (2013b) Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization. PLoS ONE 8:1–6

    CAS  Google Scholar 

  • Song Z, Wang H, Strong PJ, Li Z, Jiang P (2012b) Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration. Earth Sci Rev 115:319–331

    Article  CAS  Google Scholar 

  • Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Proc Land 33:1436–1457. https://doi.org/10.1002/esp.1712

    Article  CAS  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley DJ (2009) The Global Biogeochemical Silicon Cycle. SILICON 1:207–213. https://doi.org/10.1007/s12633-010-9035-x

    Article  CAS  Google Scholar 

  • Trinh TK, Nguyen TTH, Nguyen TN, Wu TY, Meharg AA, Nguyen MN (2017) Characterization and dissolution properties of phytolith occluded phosphorus in rice straw. Soil & Tillage Research 171:19–24

    Article  Google Scholar 

  • Van Bennekom AJ, Buma AGJ, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of biogenic silica. Mar Chem 35:423–434

    Article  Google Scholar 

  • Vandevenne FI, Barão L, Ronchi B, Govers G, Meire P, Kelly EF, Struyf E (2015) Silicon pools in human impacted soils of temperate zones. Global Biogeochem Cycles 29:1439–1450. https://doi.org/10.1002/2014GB005049

    Article  CAS  Google Scholar 

  • Wang Y, Lv H (1993) Researches and applications of phytoliths. Ocean Press, Beijing

    Google Scholar 

  • Wen C, Lu H, Zuo X, Ge Y (2018) Advance of research on modern soil phytolith. Sci China Earth Sci 61:1169–1182. https://doi.org/10.1007/s11430-017-9220-8

    Article  CAS  Google Scholar 

  • Wilding LP (1967) Radiocarbon Dating of Biogenetic Opal. Science 156:66–67

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Song Z, Liu H, Van Zwieten L, Song A, Li Z, Hao Q, Zhang X, Wang H (2018) Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Geoderma 312:36–44

    Article  CAS  Google Scholar 

  • Yang X, Song Z, Sullivan LA, Wang H, Li Z, Li Y, Zhang F (2016) Topographic control on phytolith carbon sequestration in moso bamboo (Phyllostachys pubescens) ecosystems. Carbon Management 7:105–112

    Article  CAS  Google Scholar 

  • Zhang X, Song Z, Mcgrouther K, Li J, Li Z, Ru N, Wang H (2016) The impact of different forest types on phytolith-occluded carbon accumulation in subtropical forest soils. J Soils Sediments 16:461–466

    Article  CAS  Google Scholar 

  • Zhang X, Song Z, Zhao Z, Van Zwieten L, Li J, Liu L, Xu S, Wang H (2017) Impact of climate and lithology on soil phytolith-occluded carbon accumulation in eastern China. J Soils Sediments 17:481–490

    Article  CAS  Google Scholar 

  • Zhao Y, Song Z, Xu X, Liu H, Wu X, Li Z, Guo F, Pan W (2016) Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecol Res 31:117–123

    Article  CAS  Google Scholar 

  • Zuo X, Lü H (2011) Carbon sequestration within millet phytoliths from dry-farming of crops in China. Science Bulletin 56:3451–3456

    Article  CAS  Google Scholar 

  • Zuo X, Lü H, Gu Z (2014) Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica–carbon cycles. Plant Soil 374:223–232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Technologies Research and Development Program of China (grant numbers 2017YFC0504003 and 2017YFC050410302); the Natural Science Foundation of Inner Mongolia, China (grant number 2018MS03049); and the Scientific Research Fund of Young Teachers in Forestry College, Inner Mongolia Agricultural University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wang.

Additional information

Responsible Editor: Martin J. Hodson.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Meng, M. & Zhang, Q. Soil phytoliths in Larix gmelinii forest and their relationships with soil properties. Plant Soil 474, 437–449 (2022). https://doi.org/10.1007/s11104-022-05348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05348-x

Keywords

Navigation