Skip to main content

Advertisement

Log in

Bacillus sp. WR12 alleviates iron deficiency in wheat via enhancing siderophore- and phenol-mediated iron acquisition in roots

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Iron (Fe) deficiency seriously affects crop growth and yield. This study investigated whether and how an endophytic isolate, strain Bacillus sp. WR12, alleviates Fe deficiency in wheat (Triticum aestivum L.).

Methods

Bacillus sp. WR12 and wheat seedlings were hydroponically co-cultured for 2 weeks under Fe-deficient conditions. To evaluate the Fe deficiency alleviating potential, wheat growth parameters were compared. To elucidate possible mechanisms, the genome of WR12 was sequenced, and production of siderophores was detected. In addition, transcriptomes of wheat root were compared, and accumulation of phenolic compounds was measured.

Results

Bacillus sp. WR12 significantly increased root length and dry weight, leaf chlorophyll content and Fe content in Fe-deficient wheat seedlings. Genome analysis of WR12 and CAS agar diffusion test demonstrated that WR12 had a dhbACEBF operon and produced siderophores. Significant upregulation of this operon and more siderophore synthesis in WR12 were observed when Fe was insufficient. Transcriptomic data of roots indicated change of expression of a large number of genes in Fe-deficient wheat after WR12 inoculation. Particularly, PAL, CYP73A, COMT, F5H, HCT and CAD genes involved in phenylpropane biosynthesis were significantly up-regulated. Moreover, elevated phenol accumulation was detected in the root of wheat after inoculation with WR12 under Fe deficiency.

Conclusions

Bacillus sp. WR12 alleviates Fe deficiency in wheat and this can be partially attributed to enhanced siderophore production and phenol accumulation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

B :

Bacillus

PGPB:

Plant growth promoting bacteria

LB:

Luria-Bertani

RNA-seq:

RNA sequencing

DEGs:

Differentially expressed genes

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

CAS:

Chrome azurol sulphonate

FOE:

ferrioxamine E

DHBA:

Dihydroxybenzoic acid

References

  • Arnon D (1949) Copper enzymes in isolated chloroplasts, phenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnow LE (1937) Proposed chemical mechanisms for the production of skin erythema and pigmentation by radiant energy. Science 86:176

    Article  CAS  PubMed  Google Scholar 

  • Azam Ansari M, Chung IM, Rajakumar G, A Alzohairy M, Almatroudi A, Gopiesh Khanna V, Thiruvengadam M (2019) Evaluation of polyphenolic compounds and pharmacological activities in hairy root cultures of Ligularia fischeri Turcz. f. spiciformis (Nakai). Molecules 24: 1586

  • Bashir K, Ishimaru Y, Shimo H, Kakei Y, Senoura T, Takahashi R, Satob Y, Uozumib N, Nakanishi H, Nishizawa NK (2011) Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron. Soil Sci Plant Nutr 57:803–812

    Article  CAS  Google Scholar 

  • Beasley JT, Bonneau JP, Johnson AAT (2017) Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to strategy II iron uptake in bread wheat (Triticum aestivum L). PLoS One 12:1–18

    Article  Google Scholar 

  • Bhatt K, Maheshwari DK (2019) Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. Sci Rep 9:14232

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt K, Maheshwari DK (2020) Bacillus megaterium strain CDK25, a novel plant growth promoting bacterium enhances proximate chemical and nutritional composition of Capsicum annuum L. Front Plant Sci 11:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrangsu P, Rensing C, Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15:338–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connorton JM, Balk J, Rodríguez-Celma J (2017) Iron homeostasis in plants - a brief overview. Metallomics 9:813–823

    Article  CAS  PubMed  Google Scholar 

  • Cuddy WS, Summerell BA, Gehringer MM, Neilan BA (2013) Nostoc, Microcoleus and Leptolyngbya inoculums are detrimental to the growth of wheat (Triticum aestivum L.) under salt stress. Plant Soil 370:317–332

    Article  CAS  Google Scholar 

  • Dinu M, Whittaker A, Pagliai G, Benedettelli S, Sofi F (2018) Ancient wheat species and human health: biochemical and clinical implications. J Nutr Biochem 52:1–9

    Article  CAS  PubMed  Google Scholar 

  • Djanaguiraman M, Prasad PVV, Kumari J, Rengel Z (2019) Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant Soil 439:57–73

    Article  CAS  Google Scholar 

  • Freitas MA, Medeiros FH, Carvalho SP, Guilherme LR, Teixeira WD, Zhang H, Paré PW (2015) Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Front Plant Sci 6:596

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaballa A, Antelmann H, Aguilar C, Khakh SK, Song KB, Smaldone GT, Helmann JD (2008) The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins. Proc Natl Acad Sci U S A 105:11927–11932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Vadlamudi S, Samineni S, Kumar CVS (2016) Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. SpringerPlus 5:1882

    Article  PubMed  PubMed Central  Google Scholar 

  • Gozzelino R, Arosio P (2016) Iron homeostasis in health and disease. Int J Mol Sci 17:130

    Article  PubMed Central  Google Scholar 

  • He L, Yue ZH, Chen C, Li CY, Li J, Sun ZK (2020) Enhancing iron uptake and alleviating iron toxicity in wheat by plant growth-promoting bacteria: theories and practices. Int J Agric Biol 23:190–196

    CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta K, Kim CY, Fox DT, Koppisch AT (2010) Siderophore-mediated iron acquisition in Bacillus anthracis and related strains. Microbiology 156:1918–1925

    Article  CAS  PubMed  Google Scholar 

  • Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Plant Physiol 103:139–144

    Article  CAS  Google Scholar 

  • Jin CW, He XX, Zheng SJ (2007a) The iron-deficiency induced phenolics accumulation may involve in regulation of Fe (III) chelate reductase in red clover. Plant Signal Behav 2:327–332

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin CW, You GY, He YF, Tang C, Wu P, Zheng SJ (2007b) Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol 144:278–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Li GX, Yu XH, Zheng SJ (2010) Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot 105:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir AH, Debnath T, Das U, Prity SA, Haque A, Rahman MM, Parvez MS (2020) Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiol Biochem 150:254–262

    Article  CAS  PubMed  Google Scholar 

  • Kalidasan V, Azman A, Joseph N, Kumar S, Awang Hamat R, Neela VK (2018) Putative iron acquisition systems in Stenotrophomonas maltophilia. Molecules 23:2048

    Article  PubMed Central  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator - siderophore: a review. Microbiol Res 212-213:103–111

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nozoye T, Nishizawa NK (2019) Iron transport and its regulation in plants. Free Radic Biol Med 133:11–20

    Article  CAS  PubMed  Google Scholar 

  • Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel JC (2003) Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol 160:119–125

    Article  CAS  PubMed  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66:268–276

    Article  CAS  PubMed  Google Scholar 

  • Ledea-Rodríguez JL, Reyes-Pérez JJ, Castellanos T, Angulo C, Reynoso-Granados T, Alcaraz-Meléndez L (2020) Growth, development and quality of Moringa oleifera (Lamark) seedlings inoculated with plant growth promoting bacteria. Trop Subtropical Agroecosystems 23:74

    Google Scholar 

  • Leyval C, Reid CPP (1991) Utilization of microbial siderophores by mycorrhizal and non-mycorrhizal pine roots. New Phytol 119:93–98

    Article  CAS  PubMed  Google Scholar 

  • Li W, Lan P (2017) The understanding of the plant iron deficiency responses in strategy I plants and the role of ethylene in this process by omic approaches. Front Plant Sci 8:40

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Fu JW, Da Silva E, Shi XX, Cao Y, Rathinasabapathi B, Chen Y, Ma LQ (2017) Microbial siderophores and root exudates enhanced goethite dissolution and Fe/as uptake by as-hyperaccumulator Pteris vittata. Environ Pollut 223:230–237

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ye Y, Liu J, Pu Y, Wu C (2021) Iron biofortification of crop food by symbiosis with beneficial microorganisms. J Plant Nutr:1–18

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Shinada T, Matsuda T, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554

    Article  CAS  PubMed  Google Scholar 

  • Msilini N, Oueslati S, Amdouni T, Chebbi M, Ksouri R, Lachaâl M, Ouerghi Z (2013) Variability of phenolic content and antioxidant activity of two lettuce varieties under Fe deficiency. J Sci Food Agric 93:2016–2021

    Article  CAS  PubMed  Google Scholar 

  • Nagata T, Oobo T, Aozasa O (2013) Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants. J Biosci Bioeng 115:686–690

    Article  CAS  PubMed  Google Scholar 

  • Pi H, Helmann JD (2017) Sequential induction of Fur-regulated genes in response to iron limitation in Bacillus subtilis. Proc Natl Acad Sci U S A 114:12785–12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, Cesco S (2015) Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants. Plant Physiol Biochem 87:45–52

    Article  CAS  PubMed  Google Scholar 

  • Rahimi S, Talebi M, Baninasab B, Gholami M, Zarei M, Shariatmadari H (2020) The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings. Plant Physiol Biochem 155:406–415

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna W, Rathore P, Kumari R, Yadav R (2020) Brown gold of marginal soil: plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels and carbon sequestration. Sci Total Environ 711:135062

    Article  CAS  PubMed  Google Scholar 

  • Roncel M, González-Rodríguez AA, Naranjo B, Bernal-Bayard P, Lindahl AM, Hervás M, Navarro JA, Ortega JM (2016) Iron deficiency induces a partial inhibition of the photosynthetic electron transport and a high sensitivity to light in the diatom Phaeodactylum tricornutum. Front Plant Sci 3:1050

    Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res Int 23:3984–3999

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Sebastian A, Nangia A, Prasad MN (2017) Carbon-bound iron oxide nanoparticles prevent calcium-induced iron deficiency in Oryza sativa L. J Agric Food Chem 65:557–564

    Article  CAS  PubMed  Google Scholar 

  • Segond D, Abi Khalil E, Buisson C, Daou N, Kallassy M, Lereclus D, Arosio P, Bou-Abdallah F, Nielsen Le Roux C (2014) Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization. PLoS Pathog 10:e1003935

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Chandra S, Kumar A, Bindraban P, Saxena AK, Pande V, Pandey R (2019) Foliar application of iron fortified bacteriosiderophore improves growth and grain Fe concentration in wheat and soybean. Indian J Microbiol 59:344–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun ZK, Liu K, Zhang J, Zhang Y, Xu KD, Yu DS, Wang J, Hu LZ, Chen L, Li CW (2017) IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419:1–11

    Article  CAS  Google Scholar 

  • Sun ZK, Yue ZH, Liu HZ, Ma KS, Li CW (2021) Microbial-assisted wheat iron biofortification using endophytic Bacillus altitudinis WR10. Front Nutr 8:704030

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Klopfenstein D, Pedersen B, Flick P, Sato K, Ramirez F, Yunes J, Mungall C (2015) GOATOOLS: tools for gene ontology. Zenodo

  • Tato L, De Nisi P, Donnini S, Zocchi G (2013) Low iron availability and phenolic metabolism in a wild plant species (Parietaria judaica L.). Plant Physiol Biochem 72:145–153

    Article  CAS  PubMed  Google Scholar 

  • Verma H, Jindal M, Rather SA (2021) Bacterial siderophores for enhanced plant growth. In: Malik AJ (ed) Handbook of research on microbial remediation and microbial biotechnology for sustainable soil. IGI Global, Hershey, pp 314–331

    Chapter  Google Scholar 

  • Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  • Wang MY, Xia RX, Hu LM, Dong T, Wu QS (2007) Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in Poncirus trifoliata L. Raf under calcium bicarbonate stress. J Hortic Sci Biotechnol 82:776–780

    Article  CAS  Google Scholar 

  • Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue ZH, Shen YH, Chen YJ, Liang AW, Chu CW, Chen C, Sun ZK (2019) Microbiological insights into the stress-alleviating property of an endophytic Bacillus altitudinis WR10 in wheat under low-phosphorus and high-salinity stresses. Microorganisms 7:508

    Article  CAS  PubMed Central  Google Scholar 

  • Yue ZH, Chen YJ, Chen C, Ma KS, Tian EL, Wang Y, Liu HZ, Sun ZK (2021) Endophytic Bacillus altitudinis WR10 alleviates cu toxicity in wheat by augmenting reactive oxygen species scavenging and phenylpropanoid biosynthesis. J Hazard Mater 405:124272

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Zhang D, Sun W, Wang T (2019) The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int J Mol Sci 20:2424

    Article  PubMed Central  Google Scholar 

  • Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhu L, Guo J, Xiao X, Ma Z, Wang J (2019) Bacillus subtilis STU6 ameliorates iron deficiency in tomato by enhancement of polyamine-mediated iron remobilization. J Agric Food Chem 67:320–330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32071478), the Henan Provincial Department of Science and Technology (No. 192102310137) and the Education Department of Henan Province (No. 19A180034).

Author information

Authors and Affiliations

Authors

Contributions

Yue ZH and Sun ZK conceived the experiments. Yue ZH, Chen YJ, Hao YW, Wang CC, Zhang ZF and Sun ZK carried out the experimental work. Chen C, Liu HZ, Liu YC and Li LL analyzed the data. Yue ZH prepared the draft manuscript. Sun ZH provided all required material and finalized the manuscript.

Corresponding authors

Correspondence to Lili Li or Zhongke Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Responsible Editor: Ricardo Aroca

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Chen, Y., Hao, Y. et al. Bacillus sp. WR12 alleviates iron deficiency in wheat via enhancing siderophore- and phenol-mediated iron acquisition in roots. Plant Soil 471, 247–260 (2022). https://doi.org/10.1007/s11104-021-05218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05218-y

Keywords

Navigation