Skip to main content
Log in

A core of rhizosphere bacterial taxa associates with two of the world’s most isolated plant congeners

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

A Correction to this article was published on 06 October 2021

This article has been updated

Abstract

Aims

Understanding the contributions of abiotic and biotic conditions to soil microbial diversity, structure, and function, remains a central focus in soil biology and biogeochemistry. Here we aim to determine how geography and host plant identity influence these different components of rhizosphere bacterial communities and endosymbionts associated with Acacia heterophylla on Réunion island (Mascarene archipelago, Indian Ocean) and A. koa in the Hawaiian Islands (Hawaiian archipelago, Pacific Ocean). These two tree species are remarkable: they are each other’s closest living relatives despite their habitats being more than 16 000 km apart.

Methods

Using 16S rRNA amplicon next-generation sequencing data we show that the structure of rhizosphere communities of these two acacias is largely driven by dispersal limitation between sites and local soil chemical conditions within sites.

Results

Despite high taxonomic turnover in soils collected from different sites, we found their predicted functions to be largely similar, suggestive of functional redundancy. We also identify a core of rhizosphere taxa associated with both Acacia species in both archipelagos, which included potential nitrogen-fixing mutualists. Isolation and characterisation of rhizobia from root nodules of both acacias further supported strong selection by these plants for the same Bradyrhizobium endosymbionts.

Conclusions

Overall, our data suggest that phylogenetically-closely related plants may show remarkably similar selectivity for bacterial mutualists over vast geographic distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  • Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198

    Article  CAS  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and Functions of the Bacterial Microbiota of Plants. In: Merchant SS (ed) Annual Review of Plant Biology. Annual Review of Plant Biology, vol 64, pp. 807–838

  • Burns AR, Stephens WZ, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulaud J, Brown SC, Siljak-Yakovlev S (1995) First cytogenetic investigation in populations of Acacia heterophylla, endemic from La Réunion Island, with reference to A. melanoxylon. Ann Bot 75:95–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisóstomo JA, Rodríguez-Echeverría S, Freitas H (2013) Co-introduction of exotic rhizobia to the rhizosphere of the invasive legume Acacia saligna, an intercontinental study. Appl Soil Ecol 64:118–126

    Article  Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    Article  CAS  PubMed  Google Scholar 

  • Dini-Andreote F, Brossi MJL, van Elsas JD, Salles JF (2016) Reconstructing the genetic potential of the microbially-mediated nitrogen cycle in a salt marsh ecosystem. Front Microbiol 7:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N (2017) Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA 115:E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95 ⁄ 98 ⁄ NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrington MG, Gadek PA (2009) A species well travelled – the Dodonaea viscosa (Sapindaceae) complex based on phylogenetic analyses of nuclear ribosomal ITS and ETSf sequences. J Biogeogr 36:2313–2323

    Article  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hol WHG, Garbeva P, Hordijk CA, Hundscheid MPJ, Klein Gunnewiek PJA, van Agtmaal M, Kuramae EE, de Boer W (2015) Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology 96:2042–2048

    Article  PubMed  Google Scholar 

  • Hubbell SP (2006) Neutral theory and the evolution of ecological equivalence. Ecology 87:1387–1398

    Article  PubMed  Google Scholar 

  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, Van Der Heijden MGA, Youssef NH, Zhang X, Wei Z, Hol GWH (2017) Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J 11:853–862

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamutando CN, Vikram S, Kamgan-Nkuekam G, Makhalanyane TP, Greve M, Le Roux JJ, Richardson DM, Cowan D, Valverde A (2017) Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci Rep 7:6472

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamutando CN, Vikram S, Kamgan-Nkuekam G, Makhalanyane TP, Greve M, Le Roux JJ, Richardson DM, Cowan DA, Valverde A (2019) The functional potential of the rhizospheric microbiome of an invasive tree species, Acacia dealbata. Microb Ecol 77(1):191–200

  • Keet J-H, Ellis AG, Hui C, Le Roux JJ (2017) Legume–rhizobium symbiotic promiscuity and effectiveness do not affect plant invasiveness. Ann Bot 119 (8):1319–1331

  • Kolton M, Erlacher A, Berg G, Cytryn E (2016) The Flavobacterium genus in the plant holobiont: ecological, physiological, and applicative insights. In: Sowinski SC (ed) Microbial models: from environmental to industrial sustainability. Springer Singapore, pp.189–207

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurm V, Van Der Putten WH, De Boer W, Naus-Wiezer S, Gera Hol WH (2017) Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology 98:555–564

    Article  PubMed  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Le Roux JJ, Strasberg D, Rouget M, Morden CW, Koordom M, Richardson DM (2014) Relatedness defies biogeography: the tale of two island endemics (Acacia heterophylla and A. koa). New Phytol 204:230–242

    Article  PubMed  Google Scholar 

  • Le Roux JJ, Mavengere NR, Ellis AG (2016) The structure of legume–rhizobium interaction networks and their response to tree invasions. AoB Plants 8:plw038

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Roux JJ, Hui C, Keet J-H, Ellis AG (2017) Co-introduction vs ecological fitting as pathways to the establishment of effective mutualisms during biological invasions. New Phytol 215:1354–1360

    Article  PubMed  Google Scholar 

  • Le Roux JJ, Ellis AG, van Zyl LM, Hosking ND, Keet J-H, Yannelli FA (2018) Importance of soil legacy effects and successful mutualistic interactions during Australian acacia invasions in nutrient-poor environments. J Ecol 106:2071–2081

    Article  Google Scholar 

  • Lemaire B, Dlodlo O, Chimphango S, Stirton C, Schrire B, Boatwright JS, Honnay O, Smets E, Sprent J, James EK, Muasya AM (2015) Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol Ecol 91:fiv118

    Article  PubMed  Google Scholar 

  • Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Wang R, Zhang, Young JPW, Wang ET, Sui XH, Chen WX (2015) Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol 65:4655–4661

    Article  CAS  PubMed  Google Scholar 

  • Louca S, Jacques S, Pires A, Leal JS, Srivastava DS, Wegener Parfrey L, Farjalla VF, Doebeli M (2017) High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol 1:0015

    Article  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu JK, Dou YJ, Zhu YJ, Wang SK, Sui XH, Kang LH (2014) Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64:1900–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716

    Article  CAS  PubMed  Google Scholar 

  • Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R (2018) Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218:322–334

    Article  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:6033

    Article  Google Scholar 

  • Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nat Commun 5:4473

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the β-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  PubMed  Google Scholar 

  • Ndlovu J, Richardson DM, Wilson JRU, Le Roux JJ (2013) Co-invasion of South African ecosystems by an Australian legume and its rhizobial symbionts. J Biogeogr 40:1240–1251

    Article  Google Scholar 

  • Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host associated functional signatures of the root surface microbiome. Nat Commun 5:4950

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens M, Wagner H (2013) Community Ecology Package, Vegan

  • Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721

    Article  CAS  PubMed  Google Scholar 

  • Pascale A, Proietti S, Pantelides IS, Stringlis IA (2020) Modulation of the root microbiome by plant molecules: the basis for targeted disease suppression and plant growth promotion. Front Plant Sci 10:1741

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  Google Scholar 

  • Pedrós-Alió C (2012) The Rare Bacterial Biosphere. Ann Rev Mar Sci 4:449–466

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; http://www.r-project.org

  • Ramoneda J, Le Roux JJ, Frossard E, Bester C, Oettlé N, Frey B, Gamper HA (2019) Insights from invasion ecology: can consideration of eco-evolutionary experience promote benefits from rootmutualisms in plant production? AoB Plants 11:plz060

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson DM, Carruthers J, Hui C, Impson FAC, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JRU (2011) Human-mediated introductions of Australian acacias – a global experiment in biogeography. Divers Distrib 17:771–787

    Article  Google Scholar 

  • Rodríguez-Echeverría S (2010) Rhizobial hitchhikers from down under: invasional meltdown in a plant–bacteria mutualism? J Biogeogr 37:1611–1622

    Google Scholar 

  • Rodríguez-Echeverría S, Le Roux JJ, Crisóstomo JA, Ndlovu J (2011) Jack-of-all-trades and master of many? How does associated rhizobial diversity influence the colonization success of Australian acacias? Divers Distrib 17:946–957

    Article  Google Scholar 

  • Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113:383–398

    Article  CAS  PubMed  Google Scholar 

  • Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Shade A, Stopnisek N (2019) Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr Opin Microbiol 49:50–58

    Article  PubMed  Google Scholar 

  • Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, Gilbert JA (2014) Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. Mbio 5:e01371-e1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd LD, Heenan PB (2017) Evidence for both long-distance dispersal and isolation in the Southern Oceans: molecular phylogeny of Sophora sect Edwardsia (Fabaceae). NZ J Bot 55:334–346

    Article  Google Scholar 

  • Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  PubMed  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia: Methods in legume–rhizobium technology. Springer-Verlag, New York

    Book  Google Scholar 

  • Stegen JC, Lin XJ, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stępkowski T, Banasiewicz J, Granada CE, Andrews M, Passaglia LMP (2018) Phylogeny and phylogeography of rhizobial symbionts nodulating legumes of the tribe Genisteae. Genes 9:163

    Article  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawaii: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Warrington S, Ellis A, Novoa A, Wandrag EM, Hulme PE, Duncan RO, Valentine A, Le Roux JJ (2019) Cointroductions of Australian acacias and their rhizobial mutualists in the Southern Hemisphere. J Biogeogr 46:1519–1531

    Google Scholar 

  • Yang S (2020) otuSummary: Summarizing OTU table regarding the composition, abundance and beta diversity of abundant and rare biospheres. R package version 0.1.1. https://CRAN.R-project.org/package=otuSummary

  • Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA, Schmidt S, Hugenholtz P (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8:215

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Ning D (2017) Stochastic community assembly: Does it matter in microbial ecology? Microbiol Mol Biol Rev 81:e00002–17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jesse Eiben for lab space on Hawaii island, Marelongue field research station (OSU Réunion) for research accommodation on Réunion island, and Réunion National Park for collecting permits. Megan Koordom at Stellenbosch University provided invaluable lab support. PWC and MJW acknowledge support from the DSI-NRF Centre of Excellence in Plant Health Biotechnology. JJLeR and DMR acknowledge the DSI-NRF Centre of Excellence for Invasion Biology. DMR received additional support from the Oppenheimer Memorial Trust (grant 18576/03). AV was supported by the South African National Reserach Foundation (NRF) and the project ‘CLU-2019–05 – IRNASA/CSIC Unit of Excellence’, funded by the Junta de Castilla y León and co-financed by the European Union (ERDF; ‘Europe drives our growth’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes J. Le Roux.

Ethics declarations

Not applicable

Additional information

Responsible Editor: Katharina Pawlowski.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Roux, J.J., Crous, P.W., Kamutando, C.N. et al. A core of rhizosphere bacterial taxa associates with two of the world’s most isolated plant congeners. Plant Soil 468, 277–294 (2021). https://doi.org/10.1007/s11104-021-05049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05049-x

Keywords

Navigation