Skip to main content

Advertisement

Log in

Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

In China and several other rice growing countries, lime application is a common practice to alleviate soil acidification in rice paddies. Liming may also reduce the concentration of the common toxin Cadmium (Cd) in rice plants. We evaluated to what extent lime application affects rice yield and grain Cd concentration.

Methods

We conducted a meta-analysis to quantify the effect of liming on rice yield and grain Cd concentration, synthesizing data from 35 studies.

Results

Averaged across our dataset, lime application significantly increased rice yield (+ 12.9%) and soil pH (+ 0.85 units), and reduced grain Cd concentrations (-48%). Overall, grain Cd uptake and soil available Cd were reduced by 48% and 44% under liming, respectively. Liming increased rice yield more strongly 1) in soils with initial pH < 4.5 than in soils with pH ≥ 4.5, and 2) at lime rates ≥ 3.0 t ha−1 than at lime rates < 3.0 t ha−1. Liming-induced reductions in grain Cd concentration, grain Cd uptake and soil available Cd all increased with lime application rates. Lime application rates exceeding 1.0 and 6.0 t ha−1 reduced average grain Cd concentrations to meet food safety standards set by the FAO/WHO and China, respectively.

Conclusions

Lime application is effective in both enhancing grain yield and reducing grain Cd concentrations in acidic rice paddies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ai C, Liang GQ, Sun JW, He P, Tang SH, Yang SH, Zhou W, Wang XB (2015) The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biol Fertil Soils 51:465–477

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: The 2012 revision. FAO: ESA working paper, Rome

    Google Scholar 

  • Bolan NS, Adriano DC, Mani PA, Duraisamy A (2003) Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of Lime Addition Plant Soil 251:187–198

    Article  CAS  Google Scholar 

  • Bolan NS, Makino T, Kunhikrishnan A, Kim PJ, Ishikawa S, Murakami M, Naidu R, Kirkham MB (2013) Cadmium contamination and its risk management in rice ecosystems. Adv Agron 119:183–273

    Article  CAS  Google Scholar 

  • Chen HP, Zhang WW, Yang XP, Wang P, McGrath SP, Zhao FJ (2018) Effective methods to reduce cadmium accumulation in rice grain. Chemosphere 207:699–707

    Article  CAS  PubMed  Google Scholar 

  • Costa MCG (2012) Soil and crop responses to lime and fertilizers in a fire-free land use system for smallholdings in the northern Brazilian Amazon. Soil Tillage Res 121:27–37

    Article  Google Scholar 

  • Ding CF, Du SY, Ma YB, Li XG, Zhang TL, Wang XX (2019) Changes in the pH of paddy soils after flooding and drainage: Modeling and validation. Geoderma 337:511–513

    Article  CAS  Google Scholar 

  • Duan MM, Wang S, Huang DY, Zhu QH, Liu SL, Zhang Q, Zhu HH, Xu C (2018) Effectiveness of simultaneous applications of lime and Zinc/Iron foliar sprays to minimize cadmium accumulation in rice. Ecotoxicol Environ Saf 165:510–515

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2010) EFSA Panel on contaminants in the food chain (CONTAM). Scientific opinion on lead in food. EFSA J 8:1570. https://doi.org/10.2903/j.efsa.2010.1570

    Article  CAS  Google Scholar 

  • Fageria NK, Baligar VC (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  • Farhana A, Shamshuddin J, Fauziah CI, Panhwar QA (2017) Enhancing the fertility of an acid sulfate soil for rice cultivation using lime in combination with bio-organic fertilizer. Pak J Bot 49:1867–1875

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2004) Rice and human nutrition. Available from: http://www.fao.org/rice2004/zh/f-sheet/factsheet3.pdf

  • Fornara DA, Steinbeiss S, McNamara NP, Gleixner G, Oakley S, Poulton PR, Macdonald AJ, Bardgett RD (2011) Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Glob Change Biol 17:1925–1934

    Article  Google Scholar 

  • Gnanamanickam SS, Candole BL, Mew TW (1992) Influence of soil factors and cultural practice on biological control of sheath blight of rice with antagonistic bacteria. Plant Soil 144:67–75

    Article  Google Scholar 

  • Guo FY, Ding CF, Zhou ZG, Huang GX, Wang XX (2018) Effects of combined amendments on crop yield and cadmium uptake in two cadmium contaminated soils under rice-wheat rotation. Ecotoxicol Environ Saf 148:303–310

    Article  CAS  PubMed  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  • Gurevitch J, Koricheva J, Nakagawa S, Stewart G (2018) Meta-analysis and the science of research synthesis. Nature 555:175

    Article  CAS  PubMed  Google Scholar 

  • Haefele SM, Nelson A, Hijmans RJ (2014) Soil quality and constraints in global rice production. Geoderma 235:250–259

    Article  CAS  Google Scholar 

  • Haling RE, Simpson RJ, Delhaize E, Hocking PJ, Richardson AE (2010) Effect of lime on root growth, morphology and the rhizosheath of cereal seedlings growing in an acid soil. Plant Soil 327:199–212

    Article  CAS  Google Scholar 

  • Hamid Y, Tang L, Hussain B, Usman M, Gurajala HK, Rashid MS, He ZL, Yang XE (2020) Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil. Environ Pollut 257:113609

    Article  CAS  PubMed  Google Scholar 

  • Hamid Y, Tang L, Yaseen M, Hussain B, Zehra A, Aziz MZ, He ZL, Yang XE (2019) Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere 214:259–268

    Article  CAS  PubMed  Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosys 51:123–137

    Article  Google Scholar 

  • He SY, He ZL, Yang XE, Stoffella PJ, Baligar VC (2015) Soil biogeochemistry, plant physiology, and phytoremediation of Cadmium-contaminated soils. Adv Agron 134:135–225

    Article  Google Scholar 

  • He YB, Huang DY, Zhu QH, Wang S, Liu SL, He HB, Zhu HH, Xu C (2017) A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime, two industrial by-products, and a low-Cd-accumulation rice cultivar. Ecotoxicol Environ Saf 136:135–141

    Article  CAS  Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Article  Google Scholar 

  • Holland JE, White PJ, Glendining MJ, Goulding KWT, McGrath SP (2019) Yield responses of arable crops to liming - An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur J Agron 105:176–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YA, Cheng HF, Tao S (2016) The challenges and solutions for Cadmium-contaminated rice in China: a critical review. Environ Int 92:515–532

    Article  PubMed  CAS  Google Scholar 

  • Huang GX, Ding CF, Hu ZY, Cui CH, Zhang TL, Wang XX (2018) Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.). Sci Total Environ 636:1040–1047

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Sheng H, Zhou P, Zhang YZ (2020) Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming. Ecotoxicol Environ Saf 188:109903

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal SK, Naamala J, Dakora FD (2018) Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol Fertil Soils 54:309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Carrijo D, Huang S, Chen J, Balaine N, Zhang WJ, van Groenigen KJ, Linquist B (2019) Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res 234:47–54

    Article  Google Scholar 

  • Khaliq MA, Tarin MWK, Jingxia G, Yanhui C, Guo W (2019) Soil liming effects on CH4, N2O emission and Cd, Pb accumulation in upland and paddy rice. Environ Pollut 248:408–420

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee J, Woo HD, Kim DW, Choi IJ, Kim YI, Kim J (2019) Association between dietary cadmium intake and early gastric cancer risk in a Korean population: a case-control study. Eur J Nutr 58:3255–3266

    Article  CAS  PubMed  Google Scholar 

  • Kirk G (2004) The biogeochemistry of submerged soils. Wiley, Chichester

    Book  Google Scholar 

  • Li HH, Xu H, Zhou S, Yu Y, Li HL, Zhou C, Chen YH, Li YY, Wang MK, Wang G (2018) Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime. Ecotoxicol Environ Saf 165:589–596

    Article  CAS  PubMed  Google Scholar 

  • Li K, Cao CL, Ma YB, Su DC, Li JM (2019a) Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Sci Total Environ 692:1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Li LF, Ai SY, Wang YH, Tang MD, Li YC (2016) In situ field-scale remediation of low Cd-contaminated paddy soil using soil amendments. Water Air Soil Pollut 227:342

    Article  CAS  Google Scholar 

  • Li Y, Cui S, Chang SX, Zhang QP (2019b) Liming effects on soil pH and crop yield depend on lime material type, application method and rate, and crop species: a global meta-analysis. J Soils Sediments 19:1393–1406

    Article  CAS  Google Scholar 

  • Liao P, Huang S, van Gestel NC, Zeng YJ, Wu ZM, van Groenigen KJ (2018) Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Res 216:217–224

    Article  Google Scholar 

  • Liao P, Liu L, He YX, Tang G, Zhang J, Zeng YJ, Wu ZM, Huang S (2020) Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system. Acta Agron Sin 46:84–92 ((in Chinese))

    Article  Google Scholar 

  • Marković J, Jović M, Smičiklas I, Šljivić-Ivanović M, Onjia A, Trivunac K, Popović A (2019) Cadmium retention and distribution in contaminated soil: Effects and interactions of soil properties, contamination level, aging time and in situ immobilization agents. Ecotoxicol Environ Saf 174:305–314

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K, Ae N, Vorachit S, Thadavon S (2015) Present soil chemical status and constraints for rice-based cropping systems in Vientiane plain and neighboring areas, Lao PDR. Plant Prod Sci 18:314–322

    Article  CAS  Google Scholar 

  • MEE (2014) Ministry of Ecology and Environment of the People’s Republic of China. Environmental quality, Soil environment. Available from: http://www.mee.gov.cn/hjzl/hjzlqt/trhj/201605/t20160526_347133.shtml

  • Meng J, Zhong LB, Wang L, Liu XM, Tang CX, Chen HJ, Xu JM (2018) Contrasting effects of alkaline amendments on the bioavailability and uptake of Cd in rice plants in a Cd-contaminated acid paddy soil. Environ Sci Pollut Res 25:8827–8835

    Article  CAS  Google Scholar 

  • Meng L, Huang TH, Shi JC, Chen J, Zhong FL, Wu LS, Xu JM (2019) Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments. J Soils Sediments 19:1788–1798

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Brito DS, Inostroza-Blancheteau C, Fernie AR, Araújo WL (2014) The complex role of mitochondrial metabolism in plant aluminum resistance. Trends Plant Sci 19:399–407

    Article  CAS  PubMed  Google Scholar 

  • Osenberg CW, Sarnelle O, Cooper SD, Holt RD (1999) Resolving ecological questions through meta-analysis: Goals, metrics, and models. Ecology 80:1105–1117

    Article  Google Scholar 

  • Pagani A, Mallarino AP (2012) Soil pH and crop grain yield as affected by the source and rate of lime. Soil Sci Soc Am J 76:1877–1886

    Article  CAS  Google Scholar 

  • Patra BN, Mohanty SK (1994) Effect of nutrients and liming on changes in pH, redox potential, and uptake of iron and manganese by wetland rice in iron-toxic soil. Bio Fertil Soils 17:285–288

    Article  CAS  Google Scholar 

  • Qian HY, Huang S, Chen J, Wang L, Hungate BA, van Kessel C, Zhang J, Deng AX, Jiang Y, van Groenigen KJ, Zhang WJ (2020) Lower-than-expected CH4 emissions from rice paddies with rising CO2 concentrations. Glob Change Biol 26:2368–2376

    Article  Google Scholar 

  • Qin SY, Liu HG, Nie ZJ, Rengel Z, Gao W, Li C, Zhang P (2020) Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30:168–180

    Article  Google Scholar 

  • Sebastian A, Prasad MNV (2014) Cadmium minimization in rice. A Review Agron Sustain Dev 34:155–173

    Article  CAS  Google Scholar 

  • Shahid M, Nayak AK, Shukla AK, Tripathi R, Kumar A, Raja R, Panda BB, Meher J, Bhattacharyya P, Dash D (2014) Mitigation of iron toxicity and iron, zinc, and manganese nutrition of wetland rice cultivars (Oryza sativa L.) grown in Iron-toxic soil. Clean-Soil Air Water 42:1604–1609

    Article  CAS  Google Scholar 

  • Shamshuddin J, Panhwar QA, Alia FJ, Shazana MARS, Radziah O, Fauziah CI (2017) Formation and utilisation of acid sulfate soils in Southeast Asia for sustainable rice cultivation. Pertanika J Trop Agric Sci 40:225–246

    Google Scholar 

  • Shangguan YX, Qin YS, Yu H, Chen K, Wei Y, Zeng XZ, Zhou ZJ, Guo S, He SY (2019) Lime application affects soil cadmium availability and microbial community composition in different soils. Clean-Soil Air Water 47:1800416

    Article  CAS  Google Scholar 

  • Shi L, Guo ZH, Liang F, Xiao XY, Peng C, Zeng P, Feng WL, Ran HZ (2019a) Effect of liming with various water regimes on both immobilization of cadmium and improvement of bacterial communities in contaminated paddy: a field experiment. Int J Environ Res Public Health 16:498

    Article  CAS  PubMed Central  Google Scholar 

  • Shi L, Guo ZH, Peng C, Xiao XY, Feng WL, Huang B, Ran HZ (2019b) Immobilization of cadmium and improvement of bacterial community in contaminated soil following a continuous amendment with lime mixed with fertilizers: a four-season field experiment. Ecotoxicol Environ Saf 171:425–434

    Article  CAS  PubMed  Google Scholar 

  • Soltani SM, Hanafi MM, Samsuri AW, Muhammed SKS, Hakim MA (2016) Rice growth improvement and grains bio-fortification through lime and zinc application in zinc deficit tropical acid sulphate soils. Chem Spec Bioavailab 28:152–162

    Article  CAS  Google Scholar 

  • Song Y, Wang YBN, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017) Dietary cadmium exposure assessment among the Chinese population. PLoS ONE 12:e0177978

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    Article  CAS  PubMed  Google Scholar 

  • Tiritan CS, Büll LT, Crusciol CA, Carmeis Filho AC, Fernandes DM, Nascente AS (2016) Tillage system and lime application in a tropical region: soil chemical fertility and corn yield in succession to degraded pastures. Soil Tillage Res 155:437–447

    Article  Google Scholar 

  • Tran TM, Bui HH, Luxhøi J, Jensen LS (2012) Application rate and composting method affect the immediate and residual manure fertilizer value in a maize-rice-rice-maize cropping sequence on a degraded soil in northern Vietnam. Soil Sci Plant Nutr 58:206–223

    Article  Google Scholar 

  • Ullah MA, Shamsuzzaman SM, Islam MR, Samsuri AW, Uddin MK (2017) Cadmium availability and uptake by rice from lime, cow-dung and poultry manure amended Ca-contaminated paddy soil. Bangl J Bot 46:291–296

    Google Scholar 

  • USEPA (1989) Risk assessment guidance for superfund, Vol. I: Human Health Evaluation Manual. Office of Solid Waste and Emergency Response, United States Environmental Protection Agency, Washington, DC; EPA/540/1–89/002

  • van Groenigen KJ, Osenberg CW, Terrer C, Carrillo Y, Dijkstra FA, Heath J, Nie M, Pendall E, Phillips RP, Hungate BA (2017) Faster turnover of new soil carbon inputs under increased atmospheric CO2. Glob Chang Biol 23:4420–4429

    Article  PubMed  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • Wang J, Vanga SK, Saxena R, Orsat V, Raghavan V (2018) Effect of climate change on the yield of cereal crops: A review. Climate 6:41

    Article  Google Scholar 

  • Wang P, Chen HP, Kopittke PM, Zhao FJ (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yao ZS, Zhan Y, Zheng XH, Zhou MH, Yan GX, Wang L, Werner C, Butterbach-Bahl K (2021) Potential benefits of liming to acid soils on climate change mitigation and food security. Glob Chang Biol. https://doi.org/10.1111/gcb.15607

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams CN (1980) Effects of lime, drainage, manganese dioxide and seedling condition on rice in acid sulphur soil in Brunei. Exp Agr 16:313–320

    Article  CAS  Google Scholar 

  • Xiao RB, Huang ZH, Li XN, Chen WP, Deng YR, Han CL (2017) Lime and phosphate amendment can significantly reduce uptake of Cd and Pb by field-grown rice. Sustainability 9:430

    Article  CAS  Google Scholar 

  • Xiao X, Zhang JX, Wang H, Han XX, Ma J, Ma Y, Luan HJ (2020) Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: a global meta-analysis. Sci Total Environ 713:135292

    Article  CAS  PubMed  Google Scholar 

  • Xie TH, Li YY, Dong HX, Liu YT, Wang MK, Wang G (2019) Effects and mechanisms on the reduction of lead accumulation in rice grains through lime amendment. Ecotoxicol Environ Saf 173:266–272

    Article  CAS  PubMed  Google Scholar 

  • Yan XD, Shi L, Cai RM (2018) Improvement of nitrogen utilization and soil properties by addition of a mineral soil conditioner: mechanism and performance. Environ Sci Pollut Res 25:2805–2813

    Article  CAS  Google Scholar 

  • Yang YJ, Chen JM, Huang QN, Tang SQ, Wang JL, Hu PS, Shao GS (2018) Can liming reduce Cadmium (Cd) accumulation in rice (Oryza sativa L.) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Chemosphere 193:547–556

    Article  CAS  PubMed  Google Scholar 

  • Yoo JH, Kim WI, Kim JY, Römkens PFAM, Lee JH, Kim DH (2013) Effects of chemical applications to metal polluted soils on Cadmium uptake by rice plant. E3S Web of Conferences 1:01006

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang L, Liu TT, Liu B, Huang DY, Zhu QH, Xu C (2018) The influence of liming on cadmium accumulation in rice grains via iron-reducing bacteria. Sci Total Environ 645:109–118

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Wang P (2020) Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446:1–21

    Article  CAS  Google Scholar 

  • Zhu HH, Chen C, Xu C, Zhu QH, Huang DY (2016) Effects of soil acidification and liming on the phytoavailability of Cadmium in paddy soils of central subtropical China. Environ Pollut 219:99–106

    Article  CAS  PubMed  Google Scholar 

  • Zhu QC, de Vries W, Liu XJ, Hao TX, Zeng MF, Shen JB, Zhang FS (2018) Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010. Sci Total Environ 618:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Zhu QC, Liu XJ, Hao TX, Zeng MF, Shen JB, Zhang FS, de Vries W (2020) Cropland acidification increases risk of yield losses and food insecurity in China. Environ Pollut 256:113145

    Article  CAS  PubMed  Google Scholar 

  • Zhu QH, Huang DY, Zhu GX, Ge TD, Liu GS, Zhu HH, Liu SL, Zhang XN (2010) Sepiolite is recommended for the remediation of Cd-contaminated paddy soil. Acta Agric Scand B 60:110–116

    CAS  Google Scholar 

  • Zia-ur-Rehman M, Khalid H, Akmal F, Ali S, Rizwan M, Qayyum MF, Iqbal M, Khalid MU, Azhar M (2017) Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field. Environ Pollut 227:560–568

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank all authors of the studies included in our dataset, especially those who have provided us with additional data. This work was supported by the National Natural Science Foundation of China (31701383) and the China Scholarship Council (201908360176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Huang.

Additional information

Responsible Editor: Fangjie Zhao.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1010 KB)

Supplementary file2 (XLSX 157 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, P., Huang, S., Zeng, Y. et al. Liming increases yield and reduces grain cadmium concentration in rice paddies: a meta-analysis. Plant Soil 465, 157–169 (2021). https://doi.org/10.1007/s11104-021-05004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05004-w

Keywords

Navigation