Skip to main content
Log in

Herbivory enhances legume-rhizobia symbioses function, increasing aboveground allocation of biologically fixed nitrogen, but only in soils without additional nitrate

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Beneficial soil microbes, such as rhizobia, engage in facultative symbioses in the roots of leguminous host plants to exchange nitrogen for products of photosynthesis, and these symbioses can be altered by biotic and abiotic factors. Here, we investigated how soil nitrate supply and aboveground insect herbivory interact to influence biological nitrogen fixation in Medicago sativa (alfalfa or lucerne).

Methods

Using field and greenhouse experiments, we quantified above- and belowground allocation of rhizobially fixed nitrogen using isotopic nitrogen ratios in plants with different combinations of herbivory and nitrate supplementation. We caged Empoasca fabae (potato leafhopper) on fixing and non-fixing cultivars of M. sativa and supplemented soils with varied nitrate concentrations.

Results

We detected strong changes in legume above- and belowground allocation of fixed nitrogen in response to both herbivory and nitrate supply. Moderate nitrate soils, irrespective of herbivory, induced little to no fixed nitrogen allocation across both field and greenhouse experiments. In the field only, non-supplemented soil increased aboveground allocation of fixed nitrogen following herbivore damage but resulted in no changes belowground. In contrast, non-supplemented and high nitrate soils in the greenhouse increased above- and belowground fixed nitrogen allocation relative to moderate nitrate soils.

Conclusion

Our results demonstrate herbivory drives distinct plant allocation strategies across soil nitrate levels, advancing our understanding of how rhizobia influence legumes both above- and belowground. Herbivory-induced changes in rhizobia-legume symbioses are likely widespread across both agricultural and natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams MA, Turnbull TL, Sprent JI, Buchmann N (2016) Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proc Natl Acad Sci 113:4098–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballhorn DJ, Elias JD, Balkan MA, Fordyce RF, Kennedy PG (2017) Colonization by nitrogen-fixing Frankia bacteria causes short-term increases in herbivore susceptibility in red alder (Alnus rubra) seedlings. Oecologia 184:497–506

    Article  PubMed  Google Scholar 

  • Ballhorn DJ, Kautz S, Schädler M (2013) Induced plant defense via volatile production is dependent on rhizobial symbiosis. Oecologia 172:833–846

    Article  PubMed  Google Scholar 

  • Ballhorn DJ, Younginger BS, Kautz S (2014) An aboveground pathogen inhibits belowground rhizobia and arbuscular mycorrhizal fungi in Phaseolus vulgaris. BMC Plant Biol 14

  • Barnes D, Heichel G, Vance C, Peaden R (1990) Registration of ‘ineffective agate’ and ‘ineffective saranac’ non-N2-fixing alfalfa germplasms. Crop Sci 30:752–753

    Google Scholar 

  • Barsch A, Tellström V, Patschkowski T, Küster H, Niehaus K (2006) Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol Plant Microbe Interact 19:998–1013

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Grothendieck G, Eigen C, Scheipl F (2015) Package ‘lme4.’ Convergence 12

  • Bonilla I, Bolanos L (2009) Mineral nutrition for legume-rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: A review, in: Organic Farming, Pest Control and Remediation of Soil Pollutants. Springer 253–274

  • Breitenbeck GA, Bremner JM (1989) Ability of free-living cells of Bradyrhizobium japonicum to denitrify in soils. Biol Fertil Soils 7:219–224

    Article  Google Scholar 

  • Brown SP, Grillo MA, Podowski JC, Heath KD (2020) Soil origin and plant genotype structure distinct microbiome compartments in the model legume Medicago truncatula. Microbiome 8:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunner SM, Goos RJ, Swenson SJ, Foster SP, Schatz BG, Lawley YE, Prischmann-Voldseth DA (2015) Impact of nitrogen fixing and plant growth-promoting bacteria on a phloem-feeding soybean herbivore. Appl Soil Ecol 86:71–81

    Article  Google Scholar 

  • Burghardt KT (2016) Nutrient supply alters goldenrod’s induced response to herbivory. Funct Ecol 30:1769–1778

    Article  Google Scholar 

  • Burity H, Ta T, Faris M, Coulman B (1989) Estimation of nitrogen fixation and transfer from alfalfa to associated grasses in mixed swards under field conditions. Plant Soil 114:249–255

    Article  Google Scholar 

  • Camargos LS, Sodek L (2010) Nodule growth and nitrogen fixation of Calopogonium mucunoides L. show low sensitivity to nitrate. Symbiosis 51:167–174

    Article  CAS  Google Scholar 

  • Carroll BJ, Gresshoff PM (1983) Nitrate Inhibition of Nodulation and Nitrogen Fixation in White Clover. Z Für Pflanzenphysiol 110:77–88

    Article  CAS  Google Scholar 

  • Ciesiołka D, Muzquiz M, Burbano C, Altares P, Pedrosa M, Wysocki W, Folkman W, Popenda M, Gulewicz K (2005) An effect of various nitrogen forms used as fertilizer on Lupinus albus L. yield and protein, alkaloid and α-galactosides content. J Agron Crop Sci 191:458–463

    Article  Google Scholar 

  • Congreves KA, Hayes A, Verhallen EA, Van Eerd LL (2015) Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil Tillage Res 152:17–28

    Article  Google Scholar 

  • Dean J, Mescher M, De Moraes C (2014) Plant dependence on rhizobia for nitrogen influences induced plant defenses and herbivore performance. Int J Mol Sci 15:1466–1480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dean JM, Mescher MC, De Moraes CM (2009) Plant–rhizobia mutualism influences aphid abundance on soybean. Plant Soil 323:187–196

    Article  CAS  Google Scholar 

  • DeLay B, Mamidala P, Wijeratne A, Wijeratne S, Mittapalli O, Wang J, Lamp W (2012) Transcriptome analysis of the salivary glands of potato leafhopper, Empoasca fabae. J Insect Physiol 58:1626–1634

    Article  CAS  PubMed  Google Scholar 

  • Denison RF, Kiers ET (2004) Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis. FEMS Microbiol Lett 237:187–193

    Article  CAS  PubMed  Google Scholar 

  • Epstein HE, Burke IC, Mosier AR (2001) Plant effects on nitrogen retention in shortgrass steppe 2 years after 15N addition. Oecologia 128:422–430

    Article  PubMed  Google Scholar 

  • Fallath T, Rosli AB, Kidd B, Carvalhais LC, Schenk PM (2017) Toward plant defense mechanisms against root pathogens, in: Agriculturally Important Microbes for Sustainable Agriculture. Springer 293–313

  • Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM (2019) Legume nodulation: The host controls the party. Plant Cell Environ 42:41–51

    Article  CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Flinn P, Hower A, Knievel D (1990) Physiological response of alfalfa to injury by Empoasca fabae (Homoptera: Cicadellidae). Environ Entomol 19:176–181

    Article  Google Scholar 

  • Forero LE, Grenzer J, Heinze J, Schittko C, Kulmatiski A (2019) Greenhouse- and field-measured plant-soil feedbacks are not correlated. Front Environ Sci 7:184

    Article  Google Scholar 

  • Forrester NJ, Ashman T-L (2018) Nitrogen fertilization differentially enhances nodulation and host growth of two invasive legume species in an urban environment. J Urban Ecol 4

  • Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, Firth D, Friendly M, Gorjanc G, Graves S (2012) Package ‘car.’ Vienna R Found Stat Comput

  • French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L (2021) Emerging strategies for precision microbiome management in diverse agroecosystems. Nat Plants 1–12

  • Friesen ML, Friel CA (2019) Legumes modulate allocation to rhizobial nitrogen fixation in response to factorial light and nitrogen manipulation. Front Plant Sci 10:1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Friman J, Pineda A, Loon JJA, Dicke M (2021) Bidirectional plant-mediated interactions between rhizobacteria and shoot-feeding herbivorous insects: a community ecology perspective. Ecol Entomol 46:1–10

    Article  Google Scholar 

  • Gibert A, Tozer W, Westoby M (2019) Plant performance response to eight different types of symbiosis. New Phytol 222:526–542

    Article  CAS  PubMed  Google Scholar 

  • Girousse C, Moulia B, Silk W, Bonnemain J-L (2005) Aphid infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion. Plant Physiol 137:1474–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goggin FL (2007) Plant–aphid interactions: molecular and ecological perspectives. Curr Opin Plant Biol 10:399–408

    Article  CAS  PubMed  Google Scholar 

  • Grunseich JM, Thompson MN, Aguirre NM, Helms AM (2019) The role of plant-associated microbes in mediating host-plant selection by insect herbivores. Plants 9:6

    Article  PubMed Central  CAS  Google Scholar 

  • Grunseich JM, Thompson MN, Hay AA, Gorman Z, Kolomiets MV, Eubanks MD, Helms AM (2020) Risky roots and careful herbivores: Sustained herbivory by a root-feeding herbivore attenuates indirect plant defences. Funct Ecol 34:1779–1789

    Article  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Hartman K, van der Heijden MG, Roussely-Provent V, Walser J-C, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5

  • Heath KD, Lau JA (2011) Herbivores alter the fitness benefits of a plant–rhizobium mutualism. Acta Oecologica 37:87–92

    Article  Google Scholar 

  • Heath KD, McGhee KE (2012) Coevolutionary constraints? the environment alters tripartite interaction traits in a legume. PLoS ONE 7:e41567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath KD, Podowski JC, Heniff S, Klinger CR, Burke PV, Weese DJ, Yang WH, Lau JA (2020) Light availability and rhizobium variation interactively mediate the outcomes of legume–rhizobium symbiosis. Am J Bot 107:229–238

    Article  CAS  PubMed  Google Scholar 

  • Heath KD, Stock AJ, Stinchcombe JR (2010) Mutualism variation in the nodulation response to nitrate: Variation in the nodule nitrate response. J Evol Biol 23:2494–2500

    Article  CAS  PubMed  Google Scholar 

  • Heinen R, Biere A, Harvey JA, Bezemer TM (2018) Effects of soil organisms on aboveground plant-insect interactions in the field: patterns, mechanisms and the role of methodology. Front Ecol Evol 6:106

    Article  Google Scholar 

  • Heinze J, Joshi J (2018) Plant–soil feedback effects can be masked by aboveground herbivory under natural field conditions. Oecologia 186:235–246

    Article  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347

  • Hutchins S, Pedigo L (1989) Potato leafhopper-induced injury on growth and development of alfalfa. Crop Sci USA

  • Imsande J (1986) Inhibition of nodule development in soybean by nitrate or reduced nitrogen. J Exp Bot 37:348–355

    Article  Google Scholar 

  • Johnson SN, McNicol JW (2010) Elevated CO2 and aboveground–belowground herbivory by the clover root weevil. Oecologia 162:209–216

    Article  PubMed  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Rehill BJ, Sardanelli S, Denno RF (2008) Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol Lett 11:841–851

    Article  PubMed  Google Scholar 

  • Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33:641–664

    Article  Google Scholar 

  • Katayama N, Nishida T, Zhang ZQ, Ohgushi T (2010) Belowground microbial symbiont enhances plant susceptibility to a spider mite through change in soybean leaf quality. Popul Ecol 52:499–506

    Article  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  CAS  PubMed  Google Scholar 

  • Kelner DJ, Vessey JK, Entz MH (1997) The nitrogen dynamics of 1-, 2- and 3-year stands of alfalfa in a cropping system. Agric Ecosyst Environ 64:1–10

    Article  CAS  Google Scholar 

  • Kempel A, Brandl R, Schädler M (2009) Symbiotic soil microorganisms as players in aboveground plant-herbivore interactions - the role of rhizobia. Oikos 118:634–640

    Article  Google Scholar 

  • Kiers ET, Rousseau RA, Denison RF (2006) Measured sanctions: legume hosts detect quantitative variation in rhizobium cooperation and punish accordingly. Evol Ecol Res 8:1077–1086

    Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–Rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kramer S, Marhan S, Ruess L, Armbruster W, Butenschoen O, Haslwimmer H, Kuzyakov Y, Pausch J, Scheunemann N, Schoene J, Schmalwasser A, Totsche KU, Walker F, Scheu S, Kandeler E (2012) Carbon flow into microbial and fungal biomass as a basis for the belowground food web of agroecosystems. Pedobiologia 55:111–119

    Article  CAS  Google Scholar 

  • Kramer-Walter KR, Laughlin DC (2017) Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant Soil 416:539–550

    Article  CAS  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmertest.’ R Package Version 2

  • Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladygina N, Hedlund K (2010) Plant species influence microbial diversity and carbon allocation in the rhizosphere. Soil Biol Biochem 42:162–168

    Article  CAS  Google Scholar 

  • Lamb JFS, Barnes DK, Russelle MP, Vance CP, Heichel GH, Henjum KI (1995) Ineffectively and effectively nodulated alfalfas demonstrate biology nitrogen fixation continues with high nitrogen fertilization. Crop Sci 35:153

    Article  Google Scholar 

  • Lamp W, Nielsen G, Quebedeaux B, Wang Z (2001) Potato leafhopper (Homoptera: Cicadellidae) injury disrupts basal transport of 14C-labelled photoassimilates in alfalfa. J Econ Entomol 94:93–97

    Article  CAS  PubMed  Google Scholar 

  • Lamp WO, Nielsen GR, Danielson SD (1994) Patterns among host plants of potato leafhopper, Empoasca fabae (Homoptera: Cicadellidae). J Kans Entomol Soc 354–368

  • Lamp WO, Nielsen GR, Fuentes CB, Quebedeaux B (2004) Feeding site preference of potato leafhopper (Homoptera: Cicadellidae) on alfalfa and its effect on photosynthesis. J Agric Urban Entomol 21:25–38

    Google Scholar 

  • Layton MB, Boethel DJ (1987) Reduction in N2 fixation by soybean in response to insect-induced defoliation. J Econ Entomol 80:1319–1324

    Article  CAS  Google Scholar 

  • Liu A, Contador CA, Fan K, Lam H-M (2018) Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Front in Plant Sci 9

  • Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–rhizobium symbiosis. Nature 422:722–726

    Article  CAS  PubMed  Google Scholar 

  • Lum MR, Hirsch AM (2002) Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment. J Plant Growth Regul 21:368–382

    Article  CAS  Google Scholar 

  • Márquez-Ortiz JJ, Lamb JFS, Johnson LD, Barnes DK, Stucker RE (1999) Heritability of crown traits in alfalfa. Crop Sci 39:38–43

    Article  Google Scholar 

  • McAuliffe C, Chamblee D, Uribe-Arango H, Woodhouse W (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by 15N dilution methods. Plant Soil 102:149–160

    Google Scholar 

  • McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. Adv Legume Syst 5:211–228

    Google Scholar 

  • Mitra D, Djebaili R, Pellegrini M, Mahakur B, Sarker A, Chaudhary P, Khoshru B, Gallo MD, Kitouni M, Barik DP, Panneerselvam P, Mohapatra PKD (2021) Arbuscular mycorrhizal symbiosis: plant growth improvement and induction of resistance under stressful conditions. J Plant Nutr 1–37

  • Naylor D, Coleman-Derr D (2018) Drought stress and root-associated bacterial communities. Front Plant Sci 8

  • Nielsen GR, Lamp WO, Stutte GW (1990) Potato leafhopper (Homoptera: Cicadellidae) feeding disruption of phloem translocation in alfalfa. J Econ Entomol 83:807–813

    Article  Google Scholar 

  • Pandharikar G, Gatti J-L, Simon J-C, Frendo P, Poirié M (2020) Aphid infestation differently affects the defences of nitrate-fed and nitrogen-fixing Medicago truncatula and alters symbiotic nitrogen fixation. Proc R Soc B Biol Sci 287:20201493

    Article  CAS  Google Scholar 

  • Peterson M, Barnes D (1981) Inheritance of ineffective nodulation and non-nodulation traits in alfalfa. Crop Sci 21:611–616

    Article  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Kaplan I, Bezemer TM (2017) Steering soil microbiomes to suppress aboveground insect pests. Trends Plant Sci 22:770–778

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng S-J, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Porter SS, Simms EL (2014) Selection for cheating across disparate environments in the legume-rhizobium mutualism. Ecol Lett 17:1121–1129

    Article  PubMed  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Regus J, Wendlandt C, Bantay R, Gano-Cohen K, Gleason N, Hollowell A, O’Neill M, Shahin K, Sachs J (2017) Nitrogen deposition decreases the benefits of symbiosis in a native legume. Plant Soil 414:159–170

    Article  CAS  Google Scholar 

  • Regus JU, Gano KA, Hollowell AC, Sachs JL (2014) Efficiency of partner choice and sanctions in Lotus is not altered by nitrogen fertilization. Proc R Soc B Biol Sci 281:20132587

    Article  Google Scholar 

  • Riedell WE, Beckendorf EA, Catangui MA (2013) Relationships between soybean shoot nitrogen components and soybean aphid populations. Arthropod-Plant Interact 7:667–676

    Article  Google Scholar 

  • Sachs J, Simms E (2006) Pathways to mutualism breakdown. Trends Ecol Evol 21:585–592

    Article  PubMed  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  PubMed  Google Scholar 

  • Schittko C, Runge C, Strupp M, Wolff S, Wurst S (2016) No evidence that plant-soil feedback effects of native and invasive plant species under glasshouse conditions are reflected in the field. J Ecol 104:1243–1249

    Article  Google Scholar 

  • Schmitt A, Pausch J, Kuzyakov Y (2013) C and N allocation in soil under ryegrass and alfalfa estimated by 13C and 15N labelling. Plant Soil 368:581–590

    Article  CAS  Google Scholar 

  • Schwachtje J, Minchin PE, Jahnke S, van Dongen JT, Schittko U, Baldwin IT (2006) SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc Natl Acad Sci 103:12935–12940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj A, Thangavel K, Uthandi S (2020) Arbuscular mycorrhizal fungi (Glomus intraradices) and diazotrophic bacterium (Rhizobium BMBS) primed defense in blackgram against herbivorous insect (Spodoptera litura) infestation. Microbiol Res 231:126355

    Article  CAS  PubMed  Google Scholar 

  • Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Funct Plant Biol 13:699–756

    CAS  Google Scholar 

  • Simonsen AK, Stinchcombe JR (2014) Herbivory eliminates fitness costs of mutualism exploiters. New Phytol 202:651–661

    Article  PubMed  Google Scholar 

  • Streeter J, Wong PP (1988) Inhibition of legume nodule formation and N2 fixation by nitrate. Crit Rev Plant Sci 7:1–23

    Article  CAS  Google Scholar 

  • Tateno R, Taniguchi T, Zhang J, Shi W-Y, Zhang J-G, Du S, Yamanaka N (2017) Net primary production, nitrogen cycling, biomass allocation, and resource use efficiency along a topographical soil water and nitrogen gradient in a semi-arid forest near an arid boundary. Plant Soil 420:209–222

    Article  CAS  Google Scholar 

  • Taylor BN, Simms EL, Komatsu KJ (2020) More than a functional group: diversity within the legume–rhizobia mutualism and its relationship with ecosystem function. Diversity 12:50

    Article  Google Scholar 

  • Thamer S, Schädler M, Bonte D, Ballhorn DJ (2011) Dual benefit from a belowground symbiosis: nitrogen fixing rhizobia promote growth and defense against a specialist herbivore in a cyanogenic plant. Plant Soil 341:209–219

    Article  CAS  Google Scholar 

  • Tonelli ML, Figueredo MS, Rodríguez J, Fabra A, Ibañez F (2020) Induced systemic resistance -like responses elicited by rhizobia. Plant Soil 448:1–14

    Article  CAS  Google Scholar 

  • Tracy BF, Albrecht K, Flores J, Hall M, Islam A, Jones G, Lamp W, MacAdam JW, Skinner H, Teutsch C (2016) Evaluation of alfalfa–tall fescue mixtures across multiple environments. Crop Sci 56:2026

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  PubMed  Google Scholar 

  • Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C (2021) Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant – microbiome – soil continuum. FEMS Microbiol Ecol 97

  • Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey B, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research (ACIAR)

  • Vance CP, Heichel GH, Barnes DK, Bryan JW, Johnson LE (1979) Nitrogen fixation, nodule development, and vegetative regrowth of alfalfa (Medicago sativa L.) following harvest. Plant Physiol 64:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vannette RL, Hunter MD (2011) Plant defence theory re-examined: nonlinear expectations based on the costs and benefits of resource mutualisms: Nonlinear effects of mutualism on defence. J Ecol 99:66–76

    Article  Google Scholar 

  • Velikova V, Salerno G, Frati F, Peri E, Conti E, Colazza S, Loreto F (2010) Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants. J Chem Ecol 36:629–641

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang Q, Yuan E, Ling X, Zhu-Salzman K, Guo H, Ge F, Sun Y (2020) An aphid facultative symbiont suppresses plant defence by manipulating aphid gene expression in salivary glands. Plant Cell Environ 43:2311–2322

    Article  CAS  PubMed  Google Scholar 

  • West JB, HilleRisLambers J, Lee TD, Hobbie SE, Reich PB (2005) Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2]. New Phytol 167:523–530

  • Wilson ACC, Sternberg LdSL, Hurley KB (2011) Aphids alter host-plant nitrogen isotope fractionation. Proc Natl Acad Sci 108:10220–10224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf AA, Funk JL, Menge DNL (2017) The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated. New Phytol 213:690–699

    Article  CAS  PubMed  Google Scholar 

  • Wolfson JL (1987) Impact of Rhizobium nodules on Sitona hispidulus, the clover root curculio. Entomol Exp Appl 43:237–243

    Article  Google Scholar 

  • Womack CL (1984) Reduction in photosynthetic and transpiration rates of alfalfa caused by potato leafhopper (Homoptera: Cicadellidae) infestations. J Econ Entomol 77:508–513

    Article  Google Scholar 

  • Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y, Wang E, Wei G (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26:1641–1651

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer

Download references

Acknowledgements

We are grateful to the Western Maryland Research and Education Center staff and greenhouse staff at the University of Maryland for their support and help in executing these experiments, as well as members of the Lamp Lab (Alina Avanesyan, Dylan Kutz, Kevin Clements, Kimmy Okada, Emily Mast, Nina McGranahan, Jessica Ho, Sami Louguit). We would like to thank Drs. Kelly Hamby, Daniel Gruner, and Karin Burghardt for feedback on an earlier version of this manuscript, as well as two anonymous reviewers. We also extend gratitude and appreciation to Dr. Alan Leslie for substantial guidance on statistical analyses and writing. This project was supported by a graduate research award provided to M. Thompson from Northeastern Sustainable Agriculture Research and Education (Award Number GNE18-187-32231), as well as by the Hatch Project MD-ENTM-180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan N. Thompson.

Additional information

Responsible Editor: Katharina Pawlowski.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45.0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, M.N., Lamp, W.O. Herbivory enhances legume-rhizobia symbioses function, increasing aboveground allocation of biologically fixed nitrogen, but only in soils without additional nitrate. Plant Soil 465, 301–316 (2021). https://doi.org/10.1007/s11104-021-04999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04999-6

Keywords

Navigation