Skip to main content
Log in

Improving the methodology for root biomass estimation in monocotyledonous tree plantations: case of oil palm (Elaeis guineensis. Jacq) in West Africa

  • Methods Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Root biomass is one of the most widely used parameters to characterise root growth and belowground carbon stock. Our aim was to define a standard method to estimate the root biomass of young and adult oil palm trees in commercial plantations.

Methods

Three methods based on the sampling excavation volume were compared using the same sampled tree. Work time and the number of workers required for each operation were recorded. We compared two large excavation volumes based on Voronoi tessellation and the standard root auger coring method in one 2-year-old and one 16-year-old commercial oil-palm plantation in Benin, West Africa.

Results

Oil palm total root biomass was estimated at 0.84 and 22.23 Mg ha−1 in the 2-year-old and 16-year-old plantation, respectively. Compared to the reference method, the simplified Voronoi trench method estimated slightly higher (+5%) and lower (−17%) total root biomass with no significant differences but required 2 and 3 times more labour time, respectively, while the auger method estimated significantly lower (−23% and − 53%) total root biomass in the 2-year-old and 16-year-old plantation, respectively. Coarse and fine root biomass were significantly higher under the windrow than under the footpath zones.

Conclusion

The simplified Voronoi trench method required twice as much labour time as the auger method but was most efficient way to estimate oil palm total root biomass, irrespective of the age of the plantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aholoukpè NSH, Amadji LG, Blavet D, Chotte J-L, Deleporte P, Dubos B, Flori A, Jourdan C (2016) Effet de la gestion des feuilles d’élagage du palmier à huile sur le stock de carbone et les propriétés physico-chimiques du sol dans les palmeraies villageoises du Bénin. Biotechnol Agron Soc Environ 20(2):171–182

    Google Scholar 

  • Aholoukpè H, Dubos B, Flori A, Deleporte P, Amadji LG, Chotte J-L, Blavet D (2013) Estimating aboveground biomass of oil palm: Allometric equations for estimating frond biomass. For Ecol Manag 292:122–129

    Article  Google Scholar 

  • Atger C. 1992. Essai sur l’architecture racinaire des arbres. Thèse de Doctorat, Uni. Montpellier II

    Google Scholar 

  • Azontondé HA (1991) Propriétés physiques et hydrauliques des sols au Bénin. Soil water balance in the Sudano-Sahelian zone. Proceedings of the Niamey work shop; February 1991. IA HS Publ.no.199, 1991. pp 253–256

  • Böhm W (1979) Methods of studying root systems. Springer, Berlin

    Book  Google Scholar 

  • Buczko U, Kuchenbuch RO (2009) Evaluation of a core sampling scheme to characterize root length density of maize. Plant Soil 316:205–215

    Article  CAS  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Rier B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Chopart JL, Siband P (1999) Development and validation of a model to describe root lenght at maize from root counts on soil profiles. Plant Soil 214:61–74

    Article  CAS  Google Scholar 

  • Cornaire B, Daniel C, Zuily-Fodil Y, Lamade E (1994) Le comportement du palmier à huile sous stress hydrique. Données du problème, premiers résultats et voies de recherche. Oléagineux 49:1–12

    Google Scholar 

  • Dufrêne E, Dubos B, Rey H, Quencez P, Saugier B (1993) Changes in evapotranspiration from an oil palm stand (Elaeis guineensis Jacq.) exposed to seasonal soil water deficit. Oléagineux 48:105–120

    Google Scholar 

  • Ennos AR (2000) The mechanics of root anchorage. Adv Bot Res 33:123–128 Rû

    Google Scholar 

  • Goh KJ, Samsudin A (1993) The root system of the oil palm (Elaeis guineensis, Jacq.). I: a modified soil core method for root study. Elaeis 5:1–11

    Google Scholar 

  • Haniff MH, Zuraidah Y, Roslan MMN (2014) Oil palm root study at a northern region in peninsula Malaysia. Int J Agric Innov Res 3(3):797–801 ISSN (Online) 2319–1473

    Google Scholar 

  • Harun MH, Henson IE, Noor MR (2003) Estimating root biomass beneath the oil palm trunk. In: Proceedings of PIPOC 2003 Agricultural Conference. Malaysian Palm Oil Board, Kuala Lumpur, pp 953–959

    Google Scholar 

  • Henson IE, Chai SH (1997) Analysis of oil palm productivity. II. Biomass, distribution, productivity and turn-over of the root system. Elaeis 9:78–92

    Google Scholar 

  • Honda M (1978) Description of cellular pattern by Dirichlet domains: the two dimensional case. J Theor Biol 72:523–543

    Article  CAS  PubMed  Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan C (1995) Modélisation de l'architecture et du développement du système racinaire du palmier à huile (Elaeis guineensis Jacq.). Thèse de doctorat. Université des Sciences et Techniques du Languedoc, Montpellier II, p 243

    Google Scholar 

  • Jourdan C, Rey H (1997a) Architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. Plant Soil 189:33–48

    Article  CAS  Google Scholar 

  • Jourdan C, Rey H (1997b) Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. II. Estimation of root parameters using the RACINES postprocessor. Plant Soil 190:235–246

    Article  CAS  Google Scholar 

  • Jourdan C, Michaux-Ferrière N, Perbal G (2000) Root system architecture and gravitropism in the oil palm. Ann Bot 85:861–868

    Article  CAS  PubMed  Google Scholar 

  • Kheong LV, Rahman ZA, Musa MH, Hussein A (2010) Empty fruit bunch application and oil palm root proliferation. J Oil Palm Res 22:750–757

    Google Scholar 

  • Kenzo T, Ichie T, Hattori D, Itioka T, Handa C, Ohkubo T, Kendawang JJ, Nakamura M, Sakaguchi M, Takahashi N, Okamoto M (2009) Development of allometric relationships for accurate estimation of above-and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J Trop Ecol 25(04):371–386. https://doi.org/10.1017/S0266467409006129

    Article  Google Scholar 

  • Khalid H, Zin ZZ, Anderson JM (1999) Quantification of oil palm biomass and nutrient value in a mature plantation. II Below-ground biomass. J Oil Palm Res 11:63–71

    Google Scholar 

  • Kirby EJM, Rackham O (1971) A note on the root growth of barley. J Appl Ecol 8:919–924

    Article  Google Scholar 

  • Kralicek K, Huy B, Poudel KP, Temesgen H, Salas C (2017) Simultaneous estimation of above- and below-ground biomass in tropical forests of Viet Nam. For Ecol Manag 390:147–156. https://doi.org/10.1016/j.foreco.2017.01.030

    Article  Google Scholar 

  • Kumar K, Prihar S, Gajri RP (1993) Determination of root distribution of wheat by auger sampling. Plant Soil 149:245–253

    Article  Google Scholar 

  • Levillain J, Thongo M’Bou A, Deleporte P, Saint-André L, Jourdan C (2011) Is the simple auger coring method reliable for belowground standing biomass estimation in Eucalyptus forest plantations? Ann Bot 108:221–230. https://doi.org/10.1093/aob/mcr102

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopèz-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes change in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marschner H, Waisel Y, Eshel A, Kafkafi U (1991) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant-roots:-the-hidden-half. Book in Series Soils, Plants, and the Environment. Marcel Dekker, Inc., pp 503–528

  • Maurice J, Laclau J-P, Scorzoni RD, Gonçalves JLM, Nouvellon Y, Bouillet J-P, Stape JL, Ranger J, Behling M, Chopart J-L (2010) Fine root isotropy in Eucalyptus grandis plantations. Towards the prediction of root length densities from root counts on trench walls. Plant Soil 334:261–275. https://doi.org/10.1007/s11104-010-0380-8

    Article  CAS  Google Scholar 

  • Mohd Haniff H (1998) Techniques for sampling oil palm root. II. Auger for peat soils. J Oil Palm Res 10(2):57–60

    Google Scholar 

  • Nelson PN, Banabas M, Scotter DR, Webb MJ (2006) Using soil water depletion to measure spatial distribution of root activity in oil palm (Elaeis guineensis Jacq.) plantations. Plant Soil 286:109–121

    Article  CAS  Google Scholar 

  • Nelson PN, Webb MJ, Banabas M, Nake S, Goodrick I, Gordon J, O’Grady D, Dubos B (2014) Methods to account for tree-scale variability in soil- and plant-related parameters in oil palm plantations. Plant Soil 374:459–471

    Article  CAS  Google Scholar 

  • Ngando EGF, Etta CE, Ntsomboh GN, Oben TT (2013) Breeding oil palm (Elaeis guineensis Jacq.) for fusarium wilt tolerance: an overview of research programmes and seed production potentialities in Cameroon. Int J Agric Sci 3(5):513–520

    Google Scholar 

  • Nodichao L, Chopart J-L, Roupsard O, Vauclin M, Ake S, Jourdan C (2011) Genotypic variability of oil palm root system distribution in the field. Consequences for water uptake. Plant Soil 341(1–2):505–520. https://doi.org/10.1007/s11104-010-0663-0

    Article  CAS  Google Scholar 

  • Nodichao L (2008) Biodiversité racinaire, absorption potassique et résistance à la sécheresse chez le palmier à huile au Bénin. Thèse Université Cocody Abidjan, Côte d’Ivoire, p 346

    Google Scholar 

  • Ouvrier M (1995) Etude du système racinaire, Rapport interne, IDE-FOR-DPO, p 20

    Google Scholar 

  • Reis de Carvalho CJ (1991) Mécanismes de résistance à la sécheresse chez des plantes jeunes et adultes de palmier à huile (Elaeis guineensis Jacq.). Thèse de doctorat. Paris-Sud, Orsay, p 203

    Google Scholar 

  • Rey H, Quencez P, Dufrêne E, Dubos B (1998) Profils hydriques et alimentation en eau du palmier à huile en côte d’Ivoire. Plantation Recherche Développement 5:47–53

    Google Scholar 

  • Rüegg J (2017) Oil palm plantations in savannas: impact on biomass carbon stocks and soil organic carbon (SOC) dynamics, Master Thesis in Environmental Sciences at ETH Zürich. Ecole Polytechnique Fédérale de Lausanne, p 64

    Google Scholar 

  • Rüegg J, Quezada JC, Santonja M, Ghazoul J, Kuzyakov Y, Buttler A, Guillaume T (2019) Drivers of soil carbon stabilization in oil palm plantations. Land Degrad Dev 30:1904–1915. https://doi.org/10.1002/ldr.3380

    Article  Google Scholar 

  • Ruer P (1968) Contribution à l’étude du système racinaire du palmier à huile. These de docteur Ingénieur. Université de Paris, Paris, p 117

    Google Scholar 

  • Ruer P (1969) Système racinaire du palmier à huile et alimentation hydrique. Oléagineux 24:327–330

    Google Scholar 

  • Saint-André L, Thongo M'Bou A, Mabiala A, Mouvondy WJ, Jourdan C, Roupsard O, Deleporte P, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manag 205(1–3):199–214. https://doi.org/10.1016/j.foreco.2004.10.006

    Article  Google Scholar 

  • Smit AL, Bengough AG, Engels C, Van Noordwijk M, Pellerin S, Van de Geijn SC (2000) Root methods. A handbook. Springer Verlag, Berlin

    Book  Google Scholar 

  • Snowdon P, Raison J, Keith H, Ritson P, Grierson P, Adams M, Montagu K, Bi HQ, Burrows W, Eamus D (2002) Protocol for sampling tree and stand biomass. NCAS technical report N° 31. Australian Greenhouse Office, Canberra, p 77

    Google Scholar 

  • Sommer R, Denich M, Vlek PLG (2000) Carbon storage and root penetration in deep soils under small-farmer land-use systems in the eastern Amazon region, Brazil. Plant Soil 219:231–241

    Article  CAS  Google Scholar 

  • Syahrinudin (2005) The potential of oil palm and forest plantations for carbon sequestration on degraded land in Indonesia. In: Ecology and Development Series No. 28. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Tailliez B (1971) Le système racinaire du palmier à huile sur la plantation de San Alberto (Colombie). Oléagineux 26:435–447

    Google Scholar 

  • Tinker PB (1976) Soil requirements of the oil palm. In: Corley RHV, Hardon JJ, Wood RJ (eds) Developments in crop science. 1: Oil Palm Research. Elsevier, Amsterdam, pp 165–174

    Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York, p 444

    Book  Google Scholar 

  • Uwe B, Rolf OK, Horst HG (2008) Evaluation of a core sampling scheme to characterize root length density of maize. Plant Soil 316:205–215. https://doi.org/10.1007/s11104-008-9771-5

    Article  CAS  Google Scholar 

  • Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Bidaud Rakotoarivony C, Ebeling J, Rasamoelina M (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 22:572–583

    Article  CAS  PubMed  Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (1991) Plant roots - the hidden half. Marcel Dekker, Inc., New York, p 512

    Google Scholar 

  • Yampolsky C (1924) The pneumathodes on the roots of the oil palm (Elaeis guineensis Jacq.). Amer J Bot 11:502–512

    Article  Google Scholar 

  • Yuen JQ, Ziegler AD, Webb EL, Ryan CM (2013) Uncertainty in below-ground carbon biomass for major land covers in Southeast Asia. For Ecol Manag 310:915–926. https://doi.org/10.1016/j.foreco.2013.09.042

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to INRAB and CIRAD for providing financial support for this study. The authors warmly thank the technical staff of the Ecophysiology laboratory of CRAPP for their help particularly with root sampling in the field and processing in the lab. We thank Daphne Goodfellow for correcting the English and the two anonymous reviewers for their insightful comments and suggestions on how to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Jourdan.

Additional information

Responsible Editor: Peter J. Gregory.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 44.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dassou, O., Nodichao, L., Aholoukpè, H. et al. Improving the methodology for root biomass estimation in monocotyledonous tree plantations: case of oil palm (Elaeis guineensis. Jacq) in West Africa. Plant Soil 465, 593–611 (2021). https://doi.org/10.1007/s11104-021-04939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04939-4

Keywords

Navigation