Abstract
Aims
We investigated morphological variations in podzols caused by changes in soil porosity and permeability upon the growth of large tree-roots in a tropical barrier island (Ilha Comprida, Brazil).
Methods
Soil morphology was described in a continuous lateral sequence of podzols on a 35 m-long cliff. A soil thin section was used to characterize organic matter (OM) accumulation and to estimate soil porosity, permeability, and saturated hydraulic conductivity (Ksat). Soil texture and the contents of organic carbon, Al, and Fe were determined for each pedogenic horizon containing large tree-roots. The evolution of podzol morphology was interpreted in the context of age determinations by optically stimulated luminescence and 14C.
Results
Taproots of cashew trees (Anacardium occidentale) penetrated the cemented Bhm horizon and the massive-clayey 2Cgj horizon. Aligned with the taproot, we found a vertical OM-band with lower porosity, permeability, and Ksat than the adjacent Bh and E horizons. Irregular or broken boundaries between the E and Bh horizons were caused by large tree-roots. While the maximum age of these podzols is 3390 ± 530 years, significant and rapid changes in the Bh-horizon morphology occurred within the lifetime of the cashew trees (~ 50 years).
Conclusions
The interplay between reduction in flow adjacent to large taproots and the enhanced vertical infiltration at depth has resulted into the development of irregular and broken boundaries between the E and Bh horizons. Because tree-roots alter both local soil porosity and water flow paths, they simultaneously cause the formation and degradation of podzol Bh-horizon.
This is a preview of subscription content, access via your institution.








References
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728
Andriesse JP (1969) A study of the environment and characteristics of tropical podzols in Sarawak (East-Malaysia). Geoderma 2:201–227
Andriesse JP (1970) The development of the podzol morphology in the tropical lowlands of Sarawak (Malaysia). Geoderma 3:261–279
Bengough AG (2012) Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology. Vadose Zone J 11:2011–0111
Bloomfield C (1953) A study of podzolization: Part II. The mobilization of iron and aluminium by the leaves and bark of Agathis australis (Kauri). J Soil Sci 4:17–23
Brantley SL, Eissenstat DM, Marshall JA, Godsey SE, Balogh-Brunstad Z, Karwan DL, Papuga SA, Roering J, Dawson TE, Evaristo J, Chadwick O (2017) Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14:5115–5142
Bullock P, Fedoroff N, Jongerius A, Stoops G, Tursina T (1985) Handbook for soil thin section description. Wayne Research Publication, Albrighton
Burns DA, Hooper RP, McDonnell JJ, Freer JE, Kendall C, Beven K (1998) Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency. Water Resour Res 34:3535–3544
Buurman P, Jongmans AG (2005) Podzolisation and soil organic matter dynamics. Geoderma 125:71–83
Buurman P, Van Bergen PF, Jongmans AG, Meijer EL, Duran B, Van Lagen B (2005) Spatial and temporal variation in podzol organic matter studied by pyrolysis-gas chromatography/mass spectrometry and micromorphology. Eur J Soil Sci 56:253–270
Buurman P, Vidal-Torrado P, Martins VM (2013) The podzol hydrosequence of Itaguaré (São Paulo, Brazil). 1. Geomorphology and interpretation of profile morphology. Soil Sci Soc Am J 77:1294–1306
Carr MKV (2014) The water relations and irrigation requirements of cashew (Anacardium occidentale L.): A review. Exp Agric 50:24–39
Coelho MR, Martins VM, Vidal-Torrado P, Souza CRG, Perez XLO, Vázquez FM (2010) Relationship between soil, landscape and geological substrate of the sandy coastal plain of São Paulo State. Rev Bras Cienc Solo 34:833–846
Coelho MR, Martins VM, Pérez XLO, Vázquez FM, Gomes FH, Cooper M, Vidal-Torrado P (2012) Micromorphology of spodic horizons of the restinga region of São Paulo state. Rev Bras Cienc Solo 36:1380–1394
Cooper M, Boschi RS, Silva VBD, Silva LFS (2016) Software for micromorphometric characterization of soil pores obtained from 2-D image analysis. Sci Agric 73:388–393
Cornu S, Lucas Y, Ambrosi JP, Desjardins T (1998) Transfer of dissolved Al, Fe and Si in two Amazonian forest environments in Brazil. Eur J Soil Sci 49:377–384
Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res 20:682–690
DeConinck F (1980) Major mechanisms in formation of Spodic Horizons. Geoderma 24:101–128
DeConinck F, Righi D, Maucorps J, Robin AM (1974) Origin and micromorphological nomenclature of organic matter in sandy Spodosols. In: Rutherford GK (ed), Soil Microscopy. Proc. 4th International Working Meeting on Soil Micromorphology, pp 263–280
Embrapa (2011) Manual de métodos de análise de solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro
Fryar AE, Mukherjee A (2021) Groundwater hydrogeology. In: Alderton D, Elias SA (eds) Encyclopedia of Geology, 2nd edn. Academic Press, Cambridge, MA, pp 399–407
Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and sediment transport. Annu Rev Earth Pl Sc 31:249–273
Giannini PCF, Guedes CCF, Nascimento DR Jr, Tanaka APB, Angulo RJ, Souza MC, Assine ML (2009) Sedimentology and morphological evolution of the Ilha Comprida barrier system, southern São Paulo coast. In: Dillenburg SR, Hesp P (eds) Geology and geomorphology of Holocene coastal barriers of Brazil. Springer, Heidelberg, pp 177–224
Gomes FH, Vidal-Torrado P, Macias F, Gherardi B, Perez XLO (2007) Soils under restinga vegetation on the Cardoso Island (SP): I - Characterization and classification. Rev Bras Cienc Solo 31:1563–1580
Gomes JBV, Barreto AC, Michereff Filho M, Vidal WCL, Costa JLS, Oliveira-Filho AT, Curi N (2010) Relationship among soil attributes and ant activity in restinga soils. Rev Bras Cienc Solo 34:67–78
Guedes CCF, Giannini PCF, Sawakuchi AO, DeWitt R, Nascimento DR Jr, Aguiar VAP, Rossi MG (2011) Determination of controls on holocene barrier progradation through application of OSL dating: The ilha comprida barrier example, Southeastern Brazil. Mar Geol 285:1–16
Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187
Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCal13 southern hemisphere calibration, 0–50,000 years Cal BP. Radiocarbon 55:1889–1903
IUSS Working Group WRB (2015) International soil classification system for naming soils and creating legends for soil maps. In: World reference base for soil resources 2014, update 2015. World Soil Resources Reports No. 106. FAO, Rome
Jankowski M (2014) The evidence of lateral podzolization in sandy soils of northern Poland. Catena 112:139–147
Johnson MS, Lehmann J (2006) Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience 13:324–333
Khire MV, Benson CH, Bosscher PJ (2000) Capillary barriers: Design variables and water balance. J Geotech Geoenviron 126:695–708
Li Z, Wang D, Zhang X, Crawford JW (2018) Water flow across the interface of contrasting materials: Pressure discontinuity and its implications. J Hydrol 566:435–440
Lin H (2010) Linking principles of soil formation and flow regimes. J Hydrol 393:3–19
Lopes-Mazzetto JM, Buurman P, Schellekens J, Martinez PHRM, Vidal-Torrado P (2018) Soil morphology related to hydrology and degradation in tropical coastal podzols (SE Brazil). Catena 162:1–13
Lundström US, van Breemen N, Bain N (2000) The podzolization process: a review. Geoderma 94:91–107
Luz CLS (2011) Anacardiaceae R. Br. na Flora Fanerogâmica do Estado de São Paulo. M.Sc. Thesis, Universidade de São Paulo, Instituto de Biociências. Available via
Martinez P, Buurman P, Lopes-Mazzetto JM, Giannini PCF, Schellekens J, Vidal-Torrado P (2018) Geomorphological control on podzolisation–An example from a tropical barrier island. Geomorphology 309:86–97
Martinez P, Buurman P, Lopes-Mazzetto JM, do Nascimento DL, Vidal-Torrado P (2019) Podzolisation preserves ichnofossils constructed by ghost shrimp. Catena 180:110–119
McKeague JA (1967) An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can J Soil Sci 47:95–99
Mitchell JD, Mori SA (1987) The cashew and its relatives (Anacardium: Anacardiaceae), vol 42. New York Botanical Garden, New York, pp 1–76
Mokma DL, Schaetz RJ, Doolittle JA, Johnson EP (1990) Ground penetrating radar study of ortstein continuity in some Michigan Haplaquods. Soil Sci Soc Am J 54:936–938
Mokma DL, Doolittle JA, Tornes LA (1994) Continuity of ortstein in sandy Spodosols, Michigan. Soil Survey Horizon 35:6–10
Murphy CP (1986) Thin section preparation of soils and sediments. AB Academic Publishers, Berkhamsted
Nascimento DL, Batezelli A, Ladeira FSB (2019) The paleoecological and paleoenvironmental importance of root traces: Plant distribution and topographic significance of root patterns in Upper Cretaceous paleosols. Catena 172:789–806
Nikodem A, Kodesova R, Drabek O, Bubenickova L, Boruvka L, Pavlu L, Tejnecky V (2010) A numerical study of the impact of precipitation redistribution in a beech forest canopy on water and aluminum transport in a podzol. Vadose Zone J 9:238–251
Nishiyama N, Yokohama T (2017) Permeability of porous media–role of the critical pore size. J Geophys Res: Solid Earth 122:6955–6971
Noguchi S, Tsuboyama Y, Sidle RC, Hosoda I (1999) Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci Soc Am J 63:1413–1423
Pawlik Ł, Šamonil P (2018) Biomechanical and biochemical effects recorded in the tree root zone–soil memory, historical contingency and soil evolution under trees. Plant soil 426:109–134
Pawlik Ł, Phillips JD, Šamonil P (2016a) Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes – A critical literature review. Earth-Sci Rev 159:142–159
Pawlik Ł, Migoń P, Szymanowski M (2016b) Local-and regional‐scale biomorphodynamics due to tree uprooting in semi‐natural and managed montane forests of the Sudetes Mountains, Central Europe. Earth Surf Process Landf 41:1250–1265
Phillips JD (2007) Development of texture contrast soils by a combination of bioturbation and translocation. Catena 70:92–104
Phillips JD (2017) Soil complexity and pedogenesis. Soil Sci 182:117–127
Phillips DH, FitzPatrick EA (1999) Biological influences on the morphology and micromorphology of selected Podzols (Spodosols) and Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Geoderma 90:327–364
Phillips JD, Marion DA (2004) Pedological memory in forest soil development. Forest Ecol Manag 188:363–380
Phillips JD, Marion DA (2005) Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas. Geoderma 124:73–89
Ruiz S, Schymanski SJ, Or D (2017) Mechanics and energetics of soil penetration by earthworms and plant roots: higher rates cost more. Vadose Zone J 16:1–16
Šamonil P, Vasickova I, Danek P, Janik D, Adam D (2014) Disturbances can control fine-scale pedodiversity in old-growth forests: is the soil evolution theory disturbed as well? Biogeosciences 11:5889–5905
Šamonil P, Daněk P, Schaetzl RJ, Vašíčková I, Valtera M (2015) Soil mixing and genesis as affected by tree uprooting in three temperate forests. Eur J Soil Sci 66:589–603
Šamonil P, Daněk P, Adam D, Phillips JD (2017) Breakage or uprooting: How tree death type affects hillslope processes in old-growth temperate forests. Geomorphology 299:76–84
Šamonil P, Daněk P, Schaetzl RJ, Tejnecký V, Drábek O (2018) Converse pathways of soil evolution caused by tree uprooting: a synthesis from three regions with varying soil formation processes. Catena 161:122–136
Sauer D, Sponagel H, Sommer M, Giani L, Jahn R, Stahr K (2007) Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:581–597
Schaetzl RJ (1986) Complete soil profile inversion by tree uprooting. Phys Geogr 7:181–189
Schaetzl RJ (1990) Effects of treethrow microtopography on the characteristics and genesis of Spodosols Michigan USA. Catena 17:111–126
Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln
Shouse M, Phillips J (2016) Soil deepening by trees and the effects of parent material. Geomorphology 269:1–7
Sommer M, Halm D, Geisinger C, Andruschkewitsch I, Zarei M, Stahr K (2001) Lateral podzolization in a sandstone catchment. Geoderma 103:231–247
Sonnenborg TO, Christiansen JR, Pang B, Bruge A, Stisen S, Gundersen P (2017) Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET. Agr Forest Meteorol 239:118–133
Souza CRG, Luna GC (2008) Unidades Quaternárias E Vegetação Nativa de Planície Costeira E Baixa Encosta Da Serra Do Mar No Litoral Norte de São Paulo. Rev Inst Geol 29:1–18
Souza OA, Perez Filho A (2019) Late Holocene coastal dynamics, climate pulses and low terraces in the coast of the state of São Paulo, southeast, Brazil. J S Am Earth Sci 92:234–245
Tessler MG, Suguio K, Mahiques MMD, Furtado V (1990) Evolução temporal e espacial da desembocadura lagunar de Cananéia (SP). Bol Inst Ocean 38:23–29
Uchida T, Kosugi K, Mizuyama T (2002) Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan. Water Resour Res 38:1–24
Uchida T, Tromp-van Meerveld I, McDonnell JJ (2005) The role of lateral pipe flow in hillslope runoff response: an intercomparison of non-linear hillslope response. J Hydrol 311:117–133
Verboom WH, Pate JS (2006) Bioengineering of soil profiles in semiarid ecosystems: the ‘phytotarium’concept. A review. Plant Soil 289:71–102
Wallinga J, Murray A, Wintle A (2000) The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiat Meas 32:529–533
Yatsu E (1988) The nature of weathering: an introduction. Sozosha, Tokyo
Zhang Y, Schaap MG (2019) Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. J Hydrol 575:1011–1030
Acknowledgements
This research was supported by the São Paulo Research Foundation (FAPESP) project 2012/50276-0. We thank the National Council for Scientific and Technological Development (CNPq) for the scholarships granted to the first author (130302/2013-9 and 203749/2014-6), and for the last author (301818/2017-7). We thank Dorival Grisoto, Josiane Lopes-Mazzeto, and Judith Schellekens for the assistance in the fieldwork. We thank Maria Dragila for the insights on hydrologic parameters. We thank Karina Marques and Mariane Chiapini for taking photos of the soil thin section. We appreciate the comments and suggestions of three anonymus reviewers which helped us to improve the clarity of the article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Hans Lambers.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOCX 1.16 MB)
Rights and permissions
About this article
Cite this article
Martinez, P., Buurman, P., do Nascimento, D.L. et al. Substantial changes in podzol morphology after tree‐roots modify soil porosity and hydrology in a tropical coastal rainforest. Plant Soil 463, 77–95 (2021). https://doi.org/10.1007/s11104-021-04896-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11104-021-04896-y
Keywords
- Podzolisation
- Bioturbation
- Drainage
- Ilha Comprida
- Anacardium occidentale