Substantial changes in podzol morphology after tree‐roots modify soil porosity and hydrology in a tropical coastal rainforest

Abstract

Aims

We investigated morphological variations in podzols caused by changes in soil porosity and permeability upon the growth of large tree-roots in a tropical barrier island (Ilha Comprida, Brazil).

Methods

Soil morphology was described in a continuous lateral sequence of podzols on a 35 m-long cliff. A soil thin section was used to characterize organic matter (OM) accumulation and to estimate soil porosity, permeability, and saturated hydraulic conductivity (Ksat). Soil texture and the contents of organic carbon, Al, and Fe were determined for each pedogenic horizon containing large tree-roots. The evolution of podzol morphology was interpreted in the context of age determinations by optically stimulated luminescence and 14C.

Results

Taproots of cashew trees (Anacardium occidentale) penetrated the cemented Bhm horizon and the massive-clayey 2Cgj horizon. Aligned with the taproot, we found a vertical OM-band with lower porosity, permeability, and Ksat than the adjacent Bh and E horizons. Irregular or broken boundaries between the E and Bh horizons were caused by large tree-roots. While the maximum age of these podzols is 3390 ± 530 years, significant and rapid changes in the Bh-horizon morphology occurred within the lifetime of the cashew trees (~ 50 years).

Conclusions

The interplay between reduction in flow adjacent to large taproots and the enhanced vertical infiltration at depth has resulted into the development of irregular and broken boundaries between the E and Bh horizons. Because tree-roots alter both local soil porosity and water flow paths, they simultaneously cause the formation and degradation of podzol Bh-horizon.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  2. Andriesse JP (1969) A study of the environment and characteristics of tropical podzols in Sarawak (East-Malaysia). Geoderma 2:201–227

    CAS  Article  Google Scholar 

  3. Andriesse JP (1970) The development of the podzol morphology in the tropical lowlands of Sarawak (Malaysia). Geoderma 3:261–279

    CAS  Article  Google Scholar 

  4. Bengough AG (2012) Water dynamics of the root zone: rhizosphere biophysics and its control on soil hydrology. Vadose Zone J 11:2011–0111

    Article  Google Scholar 

  5. Bloomfield C (1953) A study of podzolization: Part II. The mobilization of iron and aluminium by the leaves and bark of Agathis australis (Kauri). J Soil Sci 4:17–23

    CAS  Article  Google Scholar 

  6. Brantley SL, Eissenstat DM, Marshall JA, Godsey SE, Balogh-Brunstad Z, Karwan DL, Papuga SA, Roering J, Dawson TE, Evaristo J, Chadwick O (2017) Reviews and syntheses: on the roles trees play in building and plumbing the critical zone. Biogeosciences 14:5115–5142

    CAS  Article  Google Scholar 

  7. Bullock P, Fedoroff N, Jongerius A, Stoops G, Tursina T (1985) Handbook for soil thin section description. Wayne Research Publication, Albrighton

    Google Scholar 

  8. Burns DA, Hooper RP, McDonnell JJ, Freer JE, Kendall C, Beven K (1998) Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency. Water Resour Res 34:3535–3544

    Article  Google Scholar 

  9. Buurman P, Jongmans AG (2005) Podzolisation and soil organic matter dynamics. Geoderma 125:71–83

    CAS  Article  Google Scholar 

  10. Buurman P, Van Bergen PF, Jongmans AG, Meijer EL, Duran B, Van Lagen B (2005) Spatial and temporal variation in podzol organic matter studied by pyrolysis-gas chromatography/mass spectrometry and micromorphology. Eur J Soil Sci 56:253–270

    CAS  Article  Google Scholar 

  11. Buurman P, Vidal-Torrado P, Martins VM (2013) The podzol hydrosequence of Itaguaré (São Paulo, Brazil). 1. Geomorphology and interpretation of profile morphology. Soil Sci Soc Am J 77:1294–1306

    CAS  Article  Google Scholar 

  12. Carr MKV (2014) The water relations and irrigation requirements of cashew (Anacardium occidentale L.): A review. Exp Agric 50:24–39

    Article  Google Scholar 

  13. Coelho MR, Martins VM, Vidal-Torrado P, Souza CRG, Perez XLO, Vázquez FM (2010) Relationship between soil, landscape and geological substrate of the sandy coastal plain of São Paulo State. Rev Bras Cienc Solo 34:833–846

    Article  Google Scholar 

  14. Coelho MR, Martins VM, Pérez XLO, Vázquez FM, Gomes FH, Cooper M, Vidal-Torrado P (2012) Micromorphology of spodic horizons of the restinga region of São Paulo state. Rev Bras Cienc Solo 36:1380–1394

    Article  Google Scholar 

  15. Cooper M, Boschi RS, Silva VBD, Silva LFS (2016) Software for micromorphometric characterization of soil pores obtained from 2-D image analysis. Sci Agric 73:388–393

    Article  Google Scholar 

  16. Cornu S, Lucas Y, Ambrosi JP, Desjardins T (1998) Transfer of dissolved Al, Fe and Si in two Amazonian forest environments in Brazil. Eur J Soil Sci 49:377–384

    CAS  Article  Google Scholar 

  17. Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res 20:682–690

    Article  Google Scholar 

  18. DeConinck F (1980) Major mechanisms in formation of Spodic Horizons. Geoderma 24:101–128

    CAS  Article  Google Scholar 

  19. DeConinck F, Righi D, Maucorps J, Robin AM (1974) Origin and micromorphological nomenclature of organic matter in sandy Spodosols. In: Rutherford GK (ed), Soil Microscopy. Proc. 4th International Working Meeting on Soil Micromorphology, pp 263–280

  20. Embrapa (2011) Manual de métodos de análise de solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro

    Google Scholar 

  21. Fryar AE, Mukherjee A (2021) Groundwater hydrogeology. In: Alderton D, Elias SA (eds) Encyclopedia of Geology, 2nd edn. Academic Press, Cambridge, MA, pp 399–407

    Google Scholar 

  22. Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and sediment transport. Annu Rev Earth Pl Sc 31:249–273

    CAS  Article  Google Scholar 

  23. Giannini PCF, Guedes CCF, Nascimento DR Jr, Tanaka APB, Angulo RJ, Souza MC, Assine ML (2009) Sedimentology and morphological evolution of the Ilha Comprida barrier system, southern São Paulo coast. In: Dillenburg SR, Hesp P (eds) Geology and geomorphology of Holocene coastal barriers of Brazil. Springer, Heidelberg, pp 177–224

    Google Scholar 

  24. Gomes FH, Vidal-Torrado P, Macias F, Gherardi B, Perez XLO (2007) Soils under restinga vegetation on the Cardoso Island (SP): I - Characterization and classification. Rev Bras Cienc Solo 31:1563–1580

    CAS  Article  Google Scholar 

  25. Gomes JBV, Barreto AC, Michereff Filho M, Vidal WCL, Costa JLS, Oliveira-Filho AT, Curi N (2010) Relationship among soil attributes and ant activity in restinga soils. Rev Bras Cienc Solo 34:67–78

    CAS  Article  Google Scholar 

  26. Guedes CCF, Giannini PCF, Sawakuchi AO, DeWitt R, Nascimento DR Jr, Aguiar VAP, Rossi MG (2011) Determination of controls on holocene barrier progradation through application of OSL dating: The ilha comprida barrier example, Southeastern Brazil. Mar Geol 285:1–16

    CAS  Article  Google Scholar 

  27. Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Article  Google Scholar 

  28. Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW, Turney CSM, Zimmerman SRH (2013) SHCal13 southern hemisphere calibration, 0–50,000 years Cal BP. Radiocarbon 55:1889–1903

    CAS  Article  Google Scholar 

  29. IUSS Working Group WRB (2015) International soil classification system for naming soils and creating legends for soil maps. In: World reference base for soil resources 2014, update 2015. World Soil Resources Reports No. 106. FAO, Rome

    Google Scholar 

  30. Jankowski M (2014) The evidence of lateral podzolization in sandy soils of northern Poland. Catena 112:139–147

    CAS  Article  Google Scholar 

  31. Johnson MS, Lehmann J (2006) Double-funneling of trees: Stemflow and root-induced preferential flow. Ecoscience 13:324–333

    Article  Google Scholar 

  32. Khire MV, Benson CH, Bosscher PJ (2000) Capillary barriers: Design variables and water balance. J Geotech Geoenviron 126:695–708

    Article  Google Scholar 

  33. Li Z, Wang D, Zhang X, Crawford JW (2018) Water flow across the interface of contrasting materials: Pressure discontinuity and its implications. J Hydrol 566:435–440

    Article  Google Scholar 

  34. Lin H (2010) Linking principles of soil formation and flow regimes. J Hydrol 393:3–19

    Article  Google Scholar 

  35. Lopes-Mazzetto JM, Buurman P, Schellekens J, Martinez PHRM, Vidal-Torrado P (2018) Soil morphology related to hydrology and degradation in tropical coastal podzols (SE Brazil). Catena 162:1–13

    Article  Google Scholar 

  36. Lundström US, van Breemen N, Bain N (2000) The podzolization process: a review. Geoderma 94:91–107

    Article  Google Scholar 

  37. Luz CLS (2011) Anacardiaceae R. Br. na Flora Fanerogâmica do Estado de São Paulo. M.Sc. Thesis, Universidade de São Paulo, Instituto de Biociências. Available via

  38. Martinez P, Buurman P, Lopes-Mazzetto JM, Giannini PCF, Schellekens J, Vidal-Torrado P (2018) Geomorphological control on podzolisation–An example from a tropical barrier island. Geomorphology 309:86–97

    Article  Google Scholar 

  39. Martinez P, Buurman P, Lopes-Mazzetto JM, do Nascimento DL, Vidal-Torrado P (2019) Podzolisation preserves ichnofossils constructed by ghost shrimp. Catena 180:110–119

    CAS  Article  Google Scholar 

  40. McKeague JA (1967) An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can J Soil Sci 47:95–99

    CAS  Article  Google Scholar 

  41. Mitchell JD, Mori SA (1987) The cashew and its relatives (Anacardium: Anacardiaceae), vol 42. New York Botanical Garden, New York, pp 1–76

    Google Scholar 

  42. Mokma DL, Schaetz RJ, Doolittle JA, Johnson EP (1990) Ground penetrating radar study of ortstein continuity in some Michigan Haplaquods. Soil Sci Soc Am J 54:936–938

    Article  Google Scholar 

  43. Mokma DL, Doolittle JA, Tornes LA (1994) Continuity of ortstein in sandy Spodosols, Michigan. Soil Survey Horizon 35:6–10

    Article  Google Scholar 

  44. Murphy CP (1986) Thin section preparation of soils and sediments. AB Academic Publishers, Berkhamsted

    Google Scholar 

  45. Nascimento DL, Batezelli A, Ladeira FSB (2019) The paleoecological and paleoenvironmental importance of root traces: Plant distribution and topographic significance of root patterns in Upper Cretaceous paleosols. Catena 172:789–806

    Article  Google Scholar 

  46. Nikodem A, Kodesova R, Drabek O, Bubenickova L, Boruvka L, Pavlu L, Tejnecky V (2010) A numerical study of the impact of precipitation redistribution in a beech forest canopy on water and aluminum transport in a podzol. Vadose Zone J 9:238–251

    CAS  Article  Google Scholar 

  47. Nishiyama N, Yokohama T (2017) Permeability of porous media–role of the critical pore size. J Geophys Res: Solid Earth 122:6955–6971

    Article  Google Scholar 

  48. Noguchi S, Tsuboyama Y, Sidle RC, Hosoda I (1999) Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci Soc Am J 63:1413–1423

    CAS  Article  Google Scholar 

  49. Pawlik Ł, Šamonil P (2018) Biomechanical and biochemical effects recorded in the tree root zone–soil memory, historical contingency and soil evolution under trees. Plant soil 426:109–134

    CAS  Article  Google Scholar 

  50. Pawlik Ł, Phillips JD, Šamonil P (2016a) Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes – A critical literature review. Earth-Sci Rev 159:142–159

    CAS  Article  Google Scholar 

  51. Pawlik Ł, Migoń P, Szymanowski M (2016b) Local-and regional‐scale biomorphodynamics due to tree uprooting in semi‐natural and managed montane forests of the Sudetes Mountains, Central Europe. Earth Surf Process Landf 41:1250–1265

    Article  Google Scholar 

  52. Phillips JD (2007) Development of texture contrast soils by a combination of bioturbation and translocation. Catena 70:92–104

    Article  Google Scholar 

  53. Phillips JD (2017) Soil complexity and pedogenesis. Soil Sci 182:117–127

    CAS  Article  Google Scholar 

  54. Phillips DH, FitzPatrick EA (1999) Biological influences on the morphology and micromorphology of selected Podzols (Spodosols) and Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Geoderma 90:327–364

    Article  Google Scholar 

  55. Phillips JD, Marion DA (2004) Pedological memory in forest soil development. Forest Ecol Manag 188:363–380

    Article  Google Scholar 

  56. Phillips JD, Marion DA (2005) Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas. Geoderma 124:73–89

    Article  Google Scholar 

  57. Ruiz S, Schymanski SJ, Or D (2017) Mechanics and energetics of soil penetration by earthworms and plant roots: higher rates cost more. Vadose Zone J 16:1–16

    Article  Google Scholar 

  58. Šamonil P, Vasickova I, Danek P, Janik D, Adam D (2014) Disturbances can control fine-scale pedodiversity in old-growth forests: is the soil evolution theory disturbed as well? Biogeosciences 11:5889–5905

    Article  Google Scholar 

  59. Šamonil P, Daněk P, Schaetzl RJ, Vašíčková I, Valtera M (2015) Soil mixing and genesis as affected by tree uprooting in three temperate forests. Eur J Soil Sci 66:589–603

    Article  Google Scholar 

  60. Šamonil P, Daněk P, Adam D, Phillips JD (2017) Breakage or uprooting: How tree death type affects hillslope processes in old-growth temperate forests. Geomorphology 299:76–84

    Article  Google Scholar 

  61. Šamonil P, Daněk P, Schaetzl RJ, Tejnecký V, Drábek O (2018) Converse pathways of soil evolution caused by tree uprooting: a synthesis from three regions with varying soil formation processes. Catena 161:122–136

    Article  CAS  Google Scholar 

  62. Sauer D, Sponagel H, Sommer M, Giani L, Jahn R, Stahr K (2007) Podzol: soil of the year 2007. A review on its genesis, occurrence, and functions. J Plant Nutr Soil Sci 170:581–597

    CAS  Article  Google Scholar 

  63. Schaetzl RJ (1986) Complete soil profile inversion by tree uprooting. Phys Geogr 7:181–189

    Article  Google Scholar 

  64. Schaetzl RJ (1990) Effects of treethrow microtopography on the characteristics and genesis of Spodosols Michigan USA. Catena 17:111–126

    Article  Google Scholar 

  65. Schoeneberger PJ, Wysocki DA, Benham EC, Soil Survey Staff (2012) Field book for describing and sampling soils, Version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln

    Google Scholar 

  66. Shouse M, Phillips J (2016) Soil deepening by trees and the effects of parent material. Geomorphology 269:1–7

    Article  Google Scholar 

  67. Sommer M, Halm D, Geisinger C, Andruschkewitsch I, Zarei M, Stahr K (2001) Lateral podzolization in a sandstone catchment. Geoderma 103:231–247

    CAS  Article  Google Scholar 

  68. Sonnenborg TO, Christiansen JR, Pang B, Bruge A, Stisen S, Gundersen P (2017) Analyzing the hydrological impact of afforestation and tree species in two catchments with contrasting soil properties using the spatially distributed model MIKE SHE SWET. Agr Forest Meteorol 239:118–133

    Article  Google Scholar 

  69. Souza CRG, Luna GC (2008) Unidades Quaternárias E Vegetação Nativa de Planície Costeira E Baixa Encosta Da Serra Do Mar No Litoral Norte de São Paulo. Rev Inst Geol 29:1–18

    Google Scholar 

  70. Souza OA, Perez Filho A (2019) Late Holocene coastal dynamics, climate pulses and low terraces in the coast of the state of São Paulo, southeast, Brazil. J S Am Earth Sci 92:234–245

    Article  Google Scholar 

  71. Tessler MG, Suguio K, Mahiques MMD, Furtado V (1990) Evolução temporal e espacial da desembocadura lagunar de Cananéia (SP). Bol Inst Ocean 38:23–29

    Article  Google Scholar 

  72. Uchida T, Kosugi K, Mizuyama T (2002) Effects of pipe flow and bedrock groundwater on runoff generation in a steep headwater catchment in Ashiu, central Japan. Water Resour Res 38:1–24

    Article  Google Scholar 

  73. Uchida T, Tromp-van Meerveld I, McDonnell JJ (2005) The role of lateral pipe flow in hillslope runoff response: an intercomparison of non-linear hillslope response. J Hydrol 311:117–133

    Article  Google Scholar 

  74. Verboom WH, Pate JS (2006) Bioengineering of soil profiles in semiarid ecosystems: the ‘phytotarium’concept. A review. Plant Soil 289:71–102

    CAS  Article  Google Scholar 

  75. Wallinga J, Murray A, Wintle A (2000) The single-aliquot regenerative-dose (SAR) protocol applied to coarse-grain feldspar. Radiat Meas 32:529–533

    CAS  Article  Google Scholar 

  76. Yatsu E (1988) The nature of weathering: an introduction. Sozosha, Tokyo

    Google Scholar 

  77. Zhang Y, Schaap MG (2019) Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. J Hydrol 575:1011–1030

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the São Paulo Research Foundation (FAPESP) project 2012/50276-0. We thank the National Council for Scientific and Technological Development (CNPq) for the scholarships granted to the first author (130302/2013-9 and 203749/2014-6), and for the last author (301818/2017-7). We thank Dorival Grisoto, Josiane Lopes-Mazzeto, and Judith Schellekens for the assistance in the fieldwork. We thank Maria Dragila for the insights on hydrologic parameters. We thank Karina Marques and Mariane Chiapini for taking photos of the soil thin section. We appreciate the comments and suggestions of three anonymus reviewers which helped us to improve the clarity of the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pedro Martinez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Hans Lambers.

Supplementary Information

ESM 1

(DOCX 1.16 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martinez, P., Buurman, P., do Nascimento, D.L. et al. Substantial changes in podzol morphology after tree‐roots modify soil porosity and hydrology in a tropical coastal rainforest. Plant Soil (2021). https://doi.org/10.1007/s11104-021-04896-y

Download citation

Keywords

  • Podzolisation
  • Bioturbation
  • Drainage
  • Ilha Comprida
  • Anacardium occidentale