Skip to main content

Advertisement

Log in

Peat-vermiculite alters microbiota composition towards increased soil fertility and crop productivity

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Harnessing soil microbiomes is a major demand for development of sustainable and productive agriculture. Here we aimed to assess the impact of two different types of organic material amendments in combination with chemical fertilizer on the plant-soil microbiota in maize farming and its link to soil fertility and crop productivity.

Methods

Soils and roots were collected from a long-term wheat-maize rotation system involving three experimental treatments: chemical fertilizer (CF); chemical fertilizer plus seasonal application of manure (OM); and chemical fertilizer plus one-time application of peat and vermiculite (PV). Crop residues were returned in all three treatments each season. Bacterial 16S rRNA gene and fungal ITS sequencing were conducted to elucidate the treatment-specific response of the microbiota in bulk soil, rhizosphere soil, and root compartment.

Results

Relative to CF and OM treatments, PV amendment led to significant increases in soil organic carbon (SOC) content, aboveground plant biomass, and grain yield over the five-year field study. The PV-induced changes in microbial composition involved the greatest treatment-specific “effect size” on indicator ASVs (amplicon sequence variants) in bulk and rhizosphere soils. The number of interactions was more than doubled in the PV co-occurrence network relative to those in the CF and OM co-occurrence networks. Potential beneficial microbes, such as Glomeromycota (arbuscular mycorrhiza), Basidiomycota, and various members of the Actinobacteria and Burkholderiales, were most enriched in the root compartment of the PV treatment.

Conclusions

Peat-vermiculite enhanced microbiota-driven soil fertility and crop productivity, thereby providing new insights into plant-soil-microbiota interactions that can be harnessed for smart farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abarenkov K, Henrik NR, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Kõljalg U (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285

    PubMed  Google Scholar 

  • Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, Keller T, Charles R, van der Heijden MGA (2019) Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J 13:1722–1736

    PubMed  PubMed Central  Google Scholar 

  • Bei Q, Moser G, Wu X, Mueller C, Liesack W (2019) Metatranscriptomics reveals climate change effects on the rhizosphere microbiomes in European grassland. Soil Biol Biochem 138:107604

    CAS  Google Scholar 

  • Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in-silico approach reveals potential PCR biases. BMC Microbiol 10:189

    PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Cui Z, Vitousek PM, Cassman KG, Matson PA, Bai JS, Meng QF, Hou P, Yue SC, Romheld V, Zhang FS (2011) Integrated soil-crop system management for food security. PNAS 108:6399–6404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Brookes PC, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10

    CAS  Google Scholar 

  • Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B (2019) Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7:136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Ding J, Zhu Y, He J, Hu H (2020) Soil bacterial taxonomic diversity is critical to maintaining the plant productivity. Environ Int 140:105766

    PubMed  Google Scholar 

  • de Vries FT, Wallenstein MD (2017) Below-ground connections underlying above ground food production: a framework for optimizing ecological connections in the rhizosphere. J Ecol 105:913–920

    Google Scholar 

  • Deng Y, Wang S (2016) Synergistic growth in bacteria depends on substrate complexity. J Microbiol 54:23–30

    PubMed  PubMed Central  Google Scholar 

  • Deru JGC, Bloem J, de Goede R, Hoekstra N, Keidel H, Kloen H, van Eekeren N (2019) Predicting soil N supply and yield parameters in peat grasslands. Applied Soil Ecol 134:77–84

    Google Scholar 

  • Ding L, Cui H, Nie S, Long X, Duan G, Zhu Y (2019) Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol 95

  • Edgar RC (2011) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Google Scholar 

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:911–920

    Google Scholar 

  • Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu Y, Chu H (2020) Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Micro 15:579–590

    CAS  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. PNAS 115:1157–1165

    Google Scholar 

  • Gardeli C, Athenaki M, Xenopoulos E, Mallouchos AKAA, Aggelis G, Papanikolaou S (2017) Lipid production and characterization by Mortierella (Umbelopsis) isabellina cultivated on lignocellulosic sugars. J Appl Micro:1461–1477

  • Hale L, Luth M, Crowley D (2015) Biochar characteristics relate to its utility as an alternative soil inoculum carrier to peat and vermiculite. Soil Biol Biochem 81:228–235

    CAS  Google Scholar 

  • Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser J, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6

  • Hermosilla E, Schalchli H, Mutis A, Diez MC (2017) Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum. Environ Sci Pollut Res 24:21984–21996

    CAS  Google Scholar 

  • Ho A, Lonardo DPD, Bodelier PLE (2017) Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol 93:fix006

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Phil Trans R Soc B Biol Sci 363:543–555

    Google Scholar 

  • Jeewani PH, Chen L, Van Zwieten L, Shen C, Guggenberger G, Luo Y, Xu J (2020) Shifts in the bacterial community along with root-associated compartments of maize as affected by goethite. Biol Fert Soils 56:1201–1210

    CAS  Google Scholar 

  • Kandeler E, Stemmer M, Klimanek EM (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem 31:261–273

    CAS  Google Scholar 

  • Kielak AM, Cipriano MAP, Kuramae EE (2016) Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch Microbiol 198:987–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lal R (2004) Ecology: Managing Soil Carbon. Science 304:393

    CAS  PubMed  Google Scholar 

  • Lundell TK, Mäkelä MR, de Vries RP, Hildén KS (2014) Genomics, lifestyles and future prospects of wood-decay and litter-decomposing Basidiomycota. In fungi, Martin FM (ed) Advances in botanical research, London: Academic, pp 329-370

  • Ma L, Zhang W, Liu Z, Huang Y, Zhang Q, Tian X, Zhu Y (2020) Complete genome sequence of Streptomyces sp. SCSIO 03032 isolated from Indian Ocean sediment, producing diverse bioactive natural products. Mar Genom. https://doi.org/10.1016/j.margen.2020.100803

  • Magoč T, Steven L (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17:10–22

    Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773

    CAS  PubMed  Google Scholar 

  • Niklasch H, Joergensen RG (2001) Decomposition of peat, biogenic municipal waste compost, and shrub/grass compost added in different rates to a silt loam. J Plant Nutr Soil Sci 164:365–369

    CAS  Google Scholar 

  • Offre P, Pivato B, Mazurier S, Siblot S, Berta G, Lemanceau P (2008) Microdiversity of Burkholderiales associated with mycorrhizal and nonmycorrhizal roots of Medicago truncatula. FEMS Microbiol Ecol 65:180–192

    CAS  PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O'Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package version 2.5-2. Community Ecol package. https://cran.r-project.org/web/packages/vegan

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    PubMed  Google Scholar 

  • Pan J, Shang Y, Zhang WJ, Chen X, Cui Z (2020) Improving soil quality for higher grain yields in Chinese wheat and maize production. Land Degrad Dev 31:1125–1137

    Google Scholar 

  • Powell MJ (2016) Blastocladiomycota. In: Archibald J et al (eds) Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6-17-1

    Chapter  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Google Scholar 

  • Reganold JP, Wachter JM (2016) Organic agriculture in the twenty-first century. Nat Plants 2:15221

    PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  • Romano I, Ventorino V, Pepe O (2020) Effectiveness of plant beneficial microbes: overview of the methodological approaches for the assessment of root colonization and persistence. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00006

  • Santoyo G, Moreno-Hagelsieb G, del Carmen O-MM, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    CAS  PubMed  Google Scholar 

  • Schmidt JE, Kent AD, Brisson VL, Gaudin ACM (2019) Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7:146

    PubMed  PubMed Central  Google Scholar 

  • Schneijderberg M, Cheng X, Franken C, de Hollanderet M, van Velzen R, Schmitz L, Heinen R, Geurts R, van der Putten WH, T. Martijn Bezemer TM, Bisseling T (2020) Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME J https://doi.org/10.1038/s41396-020-0695-2

  • Shi S, Nuccio EE, Shi Z, He Z, Zhou J, Firestone MK (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 19:926–936

    PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Cambridge, UK

    Google Scholar 

  • Tamaki H, Wright CL, Li X, Lin Q, Hwang C, Wang S, Thimmapuram J, Kamagata Y, Liu WT (2011) Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PLoS One 6:e25263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Smith EM (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27:83–99

    Google Scholar 

  • Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257

    PubMed  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621. https://doi.org/10.1038/s41579-020-0412-1

    Article  CAS  PubMed  Google Scholar 

  • van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP (2020) Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 18:546–558

    PubMed  Google Scholar 

  • van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41:392–416

    PubMed  Google Scholar 

  • Vasconcellos RLF, de Silva MCP, da Ribeiro CM, Cardoso EJBN (2010) Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci Agric 67:743–746

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21:573

    PubMed Central  Google Scholar 

  • Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, Scheel D, Friedrich MW, Overmann J (2020) Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J 14:463–475

    CAS  PubMed  Google Scholar 

  • Wang R, Zhang H, Sun L, Qi G, Chen S, Zhao XY (2017) Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci Rep 7:343

  • Wei Z, Gu Y, Friman V, Kowalchuk GA, Xu Y, Shen Q, Jousset A (2019) Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv 5:w759

    Google Scholar 

  • Xu H, Wang X, Li H, Yao H, Su J, Zhu YG (2014) Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ Sci Technol 48:9391–9399

    CAS  PubMed  Google Scholar 

  • Xu Y, Wang T, Li H, Ren C, Chen J, Yang G, Wang X (2019) Variations of soil nitrogen-fixing microorganism communities and nitrogen fractions in a Robinia pseudoacacia chronosequence on the loess plateau of China. Catena 174:316–323

    CAS  Google Scholar 

  • Zhu Y, Zhao Y, Zhu D, Gillings M, Penuelas J, Ok Y, Capon A, Banwart S (2019) Soil biota, antimicrobial resistance and planetary health. Environ Int 131:105059

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Project for the National Natural Science Foundation of China (41977038), China Agricultural University (2020TC050 & 2020TC144), and Beijing advanced discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Yongguan Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 4404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, Y., Shang, Y. et al. Peat-vermiculite alters microbiota composition towards increased soil fertility and crop productivity. Plant Soil 470, 21–34 (2022). https://doi.org/10.1007/s11104-021-04851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04851-x

Keywords

Navigation