Skip to main content

Advertisement

Log in

Assembly of rhizosphere microbial communities in Artemisia annua: recruitment of plant growth‐promoting microorganisms and inter‐kingdom interactions between bacteria and fungi

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plant roots assemble unique microbial communities in rhizosphere, which are critical for plant adapting to natural environment. Given the pivotal importance of plant-microbe interactions, this study was conducted to uncover the assembly of Artemisia annua on root-associated bacterial and fungal communities and their co-occurrence networks.

Methods

Soil samples were collected from a field experiment with 7-year plantation of Artemisia annua, including unplanted, bulk and rhizosphere soil. The microbial communities were investigated by amplicon sequencing targeting bacteria and fungi.

Results

The soil microbiomes were highly diverse among the three treatments. Bacterial and fungal communities were significantly influenced by AP (available phosphorus), AK (available potassium), TOC (total organic carbon), TN (total nitrogen) and WSN (water soluble nitrogen). Two plant growth-promoting bacteria, Sphingomonas and Sphingobium, and the fungal ASVs defined as Saprotroph were dramatically enriched in rhizosphere. Network analysis revealed that Artemisia annua built the less complex root-associated microbial network, compared to unplanted and bulk soils. Specially, the percentage of inter-kingdom interactions between bacteria and fungi increased in rhizosphere network, and showed the highest proportion of negative relationship.

Conclusions

These results indicate that A. annua could assemble the specific root-associated microbial communities with increased abundance of plant growth promoting microorganisms and build inter-kingdom co-occurrence networks, which may be beneficial for the fitness of plants to natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abarenkov K, Nilsson R, Larsson K, Alexander L, Eberhardt U, Erland S, Høiland K, Kjøller R¸ Larsson E, Pennanen T, Sen R et al (2010) The UNITE database for molecular identification of fungi–recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  • Adams RI, Miletto M, Taylor JW, Bruns TD (2013) Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J 7:1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adhikari P, Pandey A (2019) Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. Roots Rhizosphere 9:2–9

    Article  Google Scholar 

  • Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884

    Article  PubMed  PubMed Central  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  CAS  PubMed  Google Scholar 

  • Ballhausen MB, de Boer W (2016) The sapro-rhizosphere: Carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biol Biochem 102:14–17

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brescia F, Marchetti-Deschmann M, Musetti R, Perazzolli M, Pertot I, Puopolo G (2020) The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant-associated Lysobacter strain. Microbiol Res 234:126424

    Article  CAS  PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano-Hinojosa A, González-López J, Bedmar EJ (2019) Effect of nitrogen fertilisation on nitrous oxide emission and the abundance of microbial nitrifiers and denitrifiers in the bulk and rhizosphere soil of Solanum lycopersicum and Phaseolus vulgaris. Plant Soil 451:107–120

    Article  Google Scholar 

  • Ceci A, Pinzari F, Russo F, Maggi O, Persiani AM (2018) Saprotrophic soil fungi to improve phosphorus solubilisation and release: In vitro abilities of several species. Ambio 47:30–40

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wong MH, Wong YS, Tam NF (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar Pollut Bull 57:695–702

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Daniell T, Neilson R, O’Flaherty V, Griffiths B (2014) Microbial and microfaunal communities in phosphorus limited, grazed grassland change composition but maintain homeostatic nutrient stoichiometry. Soil Biol Biochem 75:94–101

    Article  CAS  Google Scholar 

  • Chen S, Waghmode TR, Sun R, Kuramae EE, Hu C, Liu B (2019) Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome 7:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter J Complex Syst 1695:1–9

    Google Scholar 

  • Ding J, Jiang X, Guan D, Zhao B, Ma M, Zhou B, Li J (2017) Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl Soil Ecol 111:114–122

    Article  Google Scholar 

  • Ding LJ, Cui HL, Nie SA, Long XE, Duan GL, Zhu YG (2019) Microbiomes inhabiting rice roots and rhizosphere. FEMS Microbiol Ecol 95:fiz040

    Article  CAS  PubMed  Google Scholar 

  • Disi JO, Mohammad HK, Lawrence K, Kloepper J, Fadamiro H (2019) A soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant Soil 437:83–92

    Article  CAS  Google Scholar 

  • Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R (2019) Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front Microbiol 10:1519

    Article  PubMed  PubMed Central  Google Scholar 

  • Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S (2018) Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:973–983

    Article  PubMed  PubMed Central  Google Scholar 

  • Duy M, Hoi N, Ve N, Thuc L, Trang N (2016) Influence of Cellulomonas flavigena, Azospirillum sp. and Pseudomonas sp. on rice growth and yield grown in submerged soil amended with rice straw. Recent Trends PGPR Res. Sust. Crop Prod 8:238–242

  • Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen A, Sundaresan J (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Prod Natl Acad Sci USA 112:E911–E920

    Article  CAS  Google Scholar 

  • Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9

    CAS  PubMed  Google Scholar 

  • Fan B, Li YL, Li L, Peng XJ, Bu C, Wu XQ, Borriss R (2017) Malonylome analysis of rhizobacterium Bacillus amyloliquefaciens FZB42 reveals involvement of lysine malonylation in polyketide synthesis and plant-bacteria interactions. J Proteomics 154:1–12

    Article  CAS  PubMed  Google Scholar 

  • Fan K, Weisenhorn P, Gilbert JA, Chu H (2018) Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol Biochem 125:251–260

    Article  CAS  Google Scholar 

  • Fan K, DelgadoBaquerizo M, Guo X, Wang D, Zhu YG, Chu H (2020) Microbial resistance promotes plant production in a four-decade nutrient fertilization experiment. Soil Biol Biochem 141:107679

    Article  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by Fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hamilton NE, Ferry M (2018) ggtern: Ternary diagrams using ggplot2. J Stat Softw 87:1–17

    Article  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al-Huqail AA, Wirth S, Egamberdieva D (2016) The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front Microbiol 7:1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan MK, McInroy JA, Jones J, Shantharaj D, Liles MR, Kloepper JW (2019) Pectin-rich amendment enhances soybean growth promotion and nodulation mediated by Bacillus velezensis strains. Plants 8:120

    Article  CAS  PubMed Central  Google Scholar 

  • Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Funct Ecol 19:166–172

    Article  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacomy M, Venturini T, Heymann S, Bastian M (2014) ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9:e98679

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawasaki A, Donn S, Ryan PR, Mathesius U, Devilla R, Jones A, Watt M (2016) Microbiome and exudates of the root and rhizosphere of Brachypodium distachyon, a model for wheat. PLoS One 11:e0164533

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Waqas M, Kang SM, Al-Harrasi A et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S et al (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microb 75:5111–5120

    Article  CAS  Google Scholar 

  • Li Y, Liu X, Hao T, Chen S (2017) Colonization and maize growth promotion induced by phosphate solubilizing bacterial isolates. Int J Mol Sci 18:1253

    Article  PubMed Central  Google Scholar 

  • Liao FL (2009) Discovery of Artemisinin (Qinghaosu). Molecules 14:5362–5366

    Article  CAS  PubMed Central  Google Scholar 

  • Lu T, Ke M, Lavoie M, Jin Y, Fan X, Zhang Z, Fu Z, Sun L, Gillings M, Peñuelas J et al (2018) Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:1–12

    Article  Google Scholar 

  • Lu F, He XL, Culleton R, Cao J (2019) A brief history of artemisinin: Modes of action and mechanisms of resistance. Chin J Nat Med 17:331–336

    PubMed  Google Scholar 

  • Luo Y, Wang F, Zhou M, Sheng HM (2019) Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Front Microbiol 10:1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcek T, Hamow KA, Vegh B, Janda T, Darko E (2019) Metabolic response to drought in six winter wheat genotypes. PLoS One 14:e0212411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mebius L (1960) A rapid method for the determination of organic carbon in soil. Anal Chim Acta 22:120–124

    Article  CAS  Google Scholar 

  • Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, Bruijn ID, Dekkers E, Voort MVD, Schneider JHM et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Arora NK (2018) Secondary metabolites of Fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45

    Article  Google Scholar 

  • Mohan S, Kiran Kumar K, Sutar V, Saha S, Rowe J, Davies KG (2020) Plant root-exudates recruit hyperparasitic bacteria of phytonematodes by altered cuticle aging: implications for biological control strategies. Front Plant Sci 11:763

    Article  PubMed  PubMed Central  Google Scholar 

  • Naylor D, Coleman-Derr D (2017) Drought stress and root-associated bacterial communities. Front Plant Sci 8:2223

    Article  PubMed  Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy P (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2019) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17:95–109

    Article  CAS  PubMed  Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197

    Article  PubMed  PubMed Central  Google Scholar 

  • Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis: chemical and microbiological properties. American Society of Agronomy Inc & Soil Science Society of America Inc., Madison

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Green TringeS, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. P Natl Acad Sci USA 110:6548–6553

    Article  CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Revi Microbiol 11:789–799

    Article  CAS  Google Scholar 

  • Pinzari F, Colaizzi P, Maggi O, Persiani A, Schütz R, Rabin I (2012) Fungal bioleaching of mineral components in a twentieth-century illuminated parchment. Anal Bioanal Chem 402:1541–1550

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:590–596

    Article  Google Scholar 

  • Rapparini F, Llusià J, Peñuelas J (2007) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  Google Scholar 

  • Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD (2018) ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000 Res 7:1418

    Article  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112:E5013–E5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi SJ, Nuccio E, Herman DJ, Rijkers R, Estera K, Li JB, da Rocha UN, He ZL, Pett-Ridge J, Brodie L, Zhou JZ, Firestone M (2015) Successional trajectories of rhizosphere bacterial communities over consecutive seasons. Mbio 6:4

    Article  Google Scholar 

  • Sousa RMS, Mendes LW, Antunes JEL, de Souza Oliveira LM, Sousa AMDCB, Gomes RLF, Araujo ASF (2020) Diversity and structure of bacterial community in rhizosphere of lima bean. Appl Soil Ecol 150:103490

    Article  Google Scholar 

  • Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Curr Genet 55:233–243

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  CAS  PubMed  Google Scholar 

  • Van Der Heijden MG, De Bruin S, Luckerhoff L, Van Logtestijn RS, Schlaeppi K (2016) A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment. ISME J 10:389–399

    Article  PubMed  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental biotechnology: for sustainable future. Springer, Berlin, pp 129–173

  • Vives-Peris V, de Ollas C, Gomez-Cadenas A, Perez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17

    Article  CAS  PubMed  Google Scholar 

  • Wanees AE, Zaslow SJ, Potter SJ, Hsieh BP, Boss BL, Izquierdo JA (2018) Draft genome sequence of the plant growth-promoting Sphingobium sp. strain AEW4, isolated from the rhizosphere of the beachgrass Ammophila breviligulata. Microbiol Resour Announc 6:e00019–e00018

    Google Scholar 

  • WHO (2018) World malaria report. World Health Organization, Geneva

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Xu N, Tan G, Wang H, Gai X (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur J Soil Biol 74:1–8

    Article  Google Scholar 

  • Yevdokimov I, Gattinger A, Buegger F, Schloter M, Munch J (2012) Changa in the structure and activity of a soil microbial community caused by inorganic nitrogen fertilization. Microbiology 81:743–749

    Article  CAS  Google Scholar 

  • Yu FB, Shan SD, Luo LP, Guan LB, Qin H (2013) Isolation and characterization of a Sphingomonas sp. strain F-7 degrading fenvalerate and its use in bioremediation of contaminated soil. J Environ Sci Health B 48:198–207

    Article  CAS  PubMed  Google Scholar 

  • Zhong W, Gu T, Wang W, Zhang B, Lin X, Huang Q, Shen W (2009) The Effects of Mineral Fertilizer and Organic Manure on Soil Microbial Community and Diversity. Plant Soil 326:511–522

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Science and Technology Major Project for “Significant New Drugs Development” (2019ZX09201005-006-004, 2017ZX09101002-003-001), The Fundamental Research Funds for the Central public welfare research institutes (ZZ13-YQ-101), and Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shilin Chen or Dongfei Han.

Additional information

Responsible Editor: Xianyong Lin.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.70 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Pan, Y., Xiang, L. et al. Assembly of rhizosphere microbial communities in Artemisia annua: recruitment of plant growth‐promoting microorganisms and inter‐kingdom interactions between bacteria and fungi. Plant Soil 470, 127–139 (2022). https://doi.org/10.1007/s11104-021-04829-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-04829-9

Navigation