Skip to main content

Advertisement

Log in

Differential olive grove management regulates the levels of primary metabolites in xylem sap

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The conventional management adopted in many Mediterranean olive orchards makes them more vulnerable to climate change and attacks by pathogens, due to the decreased chemical plant defenses. In this scenario, a metabolomic analysis was carried out on the xylem sap (Xsap) of olive plants (Olea europaea L.) grown in the Salento peninsula (Italy).

Methods

Trials were carried out in two olive groves, one organically and one conventionally managed (controls), successively both converted to sustainable management (i.e. frequent light pruning, soil and foliar fertilization, cover crops). The Xsap was extracted from the shoots of olive plants using a Scholander pressure chamber pressurized with N2 and gas chromatography-mass spectrometry metabolite profiling was performed in the Xsap.

Results

An untargeted gas chromatography mass spectrometry (GC-MS) based metabolomic analysis of primary metabolites (including underivatized volatiles) of the Xsap revealed relative abundances of 153 identified metabolites and 336 unknown features across the 12 samples from four groups of samples. Among them, more than half were involved in the primary metabolism. Many of the compounds with increased levels under sustainable management (such as amino acids, soluble sugars, sugar alcohols) have a well-known role as osmoprotectants or are involved in plant defense, growth and development during stress or recovery stages.

Conclusions

Sustainable management in olive groves can increase the ability of plants to overcome environmental stressors and enhance ecosystem balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GC/MS:

gas chromatography/mass spectrometry

PCA:

principal component analysis

S ctrl :

Squinzano control plot

S sust :

Squinzano sustainable plot

V ctrl :

Vernole control plot

V sust :

Vernole sustainable plot

X sap :

xylem sap

References

  • Acosta-Martínez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol Fertil Soils 31:85–91. https://doi.org/10.1007/s003740050628

    Article  Google Scholar 

  • Adetunji AT, Lewu FB, Mulidzi R, Ncube B (2017) The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: a review. J. Soil Sci Plant Nutr 17:794–807

    Article  CAS  Google Scholar 

  • Ashrafi M, Azimi-Moqadam MR, Moradi P, MohseniFard E, Shekari F, Kompany-Zareh M (2018) Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme. Plant Physiol Biochem 132:391–399. https://doi.org/10.1016/j.plaphy.2018.09.009

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD (2009) Current review: primary metabolism and plant defense-fuel for the fire. Mol Plant-Microbe Interact 22:487–497

    Article  CAS  Google Scholar 

  • Bown AW, Shelp BJ (2016) Plant GABA: not just a metabolite. Trends Plant Sci 21:811–813

    Article  CAS  Google Scholar 

  • Bragard C, Dehnen-Schmutz K, Di Serio F et al (2019) Update of the scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory. EFSA J 17:e05665. https://doi.org/10.2903/j.efsa.2019.5665

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellini M, Stellacci AM, Mastrangelo M, Caputo F, Manici LM (2020) Estimating the soil hydraulic functions of some olive orchards: soil management implications for water saving in soils of Salento peninsula (southern Italy). Agronomy 10. https://doi.org/10.3390/agronomy10020177

  • Chao WL, Tu HJ, Chao CC (1996) Nitrogen transformations in tropical soils under conventional and sustainable farming systems. Biol Fertil Soils 21:252–256. https://doi.org/10.1007/BF00334900

    Article  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916. https://doi.org/10.1093/aob/mcf105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chia DW, Yoder TJ, Reiter WD, Gibson SI (2000) Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 211:743–751

    Article  CAS  Google Scholar 

  • Chong J, Wishart DS, Xia J (2019) Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinformatics 68(1). https://doi.org/10.1002/cpbi.86

  • Crecchio C, Curci M, Pizzigallo MDR, Ricciuti P, Ruggiero P (2004) Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biol Biochem, pp 36:1595–1605

    Article  CAS  Google Scholar 

  • Ebabu K, Tsunekawa A, Haregeweyn N, Adgo E, Meshesha DT, Aklog D, Masunaga T, Tsubo M, Sultan D, Fenta AA, Yibeltal M (2020) Exploring the variability of soil properties as influenced by land use and management practices: a case study in the upper Blue Nile basin. Ethiopia Soil Tillage Res 200:104614. https://doi.org/10.1016/j.still.2020.104614

    Article  Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172. https://doi.org/10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606. https://doi.org/10.1016/0038-0717(88)90141-1

    Article  CAS  Google Scholar 

  • Fausto C, Mininni AN, Sofo A, Crecchio C, Scagliola M, Dichio B, Xiloyannis C (2018) Olive orchard microbiome: characterisation of bacterial communities in soil-plant compartments and their comparison between sustainable and conventional soil management systems. Plant Ecol Divers 11:597–610. https://doi.org/10.1080/17550874.2019.1596172

    Article  Google Scholar 

  • Fernie AR, Martinoia E (2009) Malate. Jack of all trades or master of a few? Phytochem 70:828–832

    Article  CAS  Google Scholar 

  • Fiore A, Lardo E, Montanaro G, Laterza D, Loiudice C, Berloco T, Dichio B, Xiloyannis C (2018) Mitigation of global warming impact of fresh fruit production through climate smart management. J Clean Prod 172:3634–3643. https://doi.org/10.1016/j.jclepro.2017.08.062

    Article  Google Scholar 

  • García-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913. https://doi.org/10.1016/S0038-0717(00)00165-6

    Article  Google Scholar 

  • Hao LH, He PQ, Liu CY, Chen KS, Li GY (2004) Physiological effects of taurine on the growth of wheat (Triticum aestivum L.) seedlings. Zhi wu sheng li yu fen zi sheng wu xue xue bao= J Plant Physiol and Mol Biol 30:595–598

    CAS  Google Scholar 

  • Herman A, Tambor K, Herman A (2016) Linalool affects the antimicrobial efficacy of essential oils. Current Microb 72:165–172

    Article  CAS  Google Scholar 

  • Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714. https://doi.org/10.1002/jms.1777

    Article  CAS  PubMed  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    Article  CAS  Google Scholar 

  • Isman MB, Proksch P (1985) Deterrent and insecticidal chromenes and benzofurans from Encelia (Asteraceae). Phytochem 24:1949–1951

    Article  CAS  Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S et al (2012) Photosynthesis, photorespiration, and light signalling in defence responses. JExp Bot 63:1619–1636

    Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    Article  CAS  Google Scholar 

  • Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: a key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606–618

    Article  CAS  Google Scholar 

  • Kuznetsov V, Shevyakova N (2007) Polyamines and stress tolerance of plants. Plant Stress 1:50–71

    Google Scholar 

  • Lai Z, Tsugawa H, Wohlgemuth G, Mehta S, Mueller M, Zheng Y, Ogiwara A, Meissen J, Showalter M, Takeuchi K, Kind T, Beal P, Arita M, Fiehn O (2018) Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat Methods 15:53–56

    Article  CAS  Google Scholar 

  • Lardo E, Fiore A, Quinto GA, Dichio B, Xiloyannis C (2018) Climate change mitigation role of orchard agroecosystems: case studies in southern Italy. Acta Horticul:13–17

  • Lawal OA, Ogunwande IA, Salvador AF, Sanni AA, Opoku AR (2014) Pachira glabra Pasq. Essential oil: chemical constituents, antimicrobial and insecticidal activities. J Oleo Sc 63:629–635

    Article  CAS  Google Scholar 

  • Lee JE, Cho YU, Kim KH, Lee DY (2016) Distinctive metabolomic responses of Chlamydomonas reinhardtii to the chemical elicitation by methyl jasmonate and salicylic acid. Process Biochem 51:1147–1154

    Article  CAS  Google Scholar 

  • Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396. https://doi.org/10.1038/nprot.2006.59

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Nieto-Jacobo MF, Ramírez-Rodríguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160:1–13

    Article  Google Scholar 

  • Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D, Jancewicz A, Masson P, Thomma B, Lahaye T, Michael AJ, Allen C (2018) Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 20:1330–1349. https://doi.org/10.1111/1462-2920.14020

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Huang M, Huang Y, Corvini PFX, Ji R, Zhao L (2020) Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ Sc: Nano

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360. https://doi.org/10.1007/s004250000292

    Article  CAS  PubMed  Google Scholar 

  • Marsilio V, Campestre C, Lanza B, De Angelis M (2001) Sugar and polyol compositions of some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food Chem 72:485–490. https://doi.org/10.1016/S0308-8146(00)00268-5

    Article  CAS  Google Scholar 

  • Martinelli F, Basile B, Morelli G, d’Andria R, Tonutti P (2012) Effects of irrigation on fruit ripening behavior and metabolic changes in olive. Sci Hortic (Amsterdam) 144:201–207. https://doi.org/10.1016/j.scienta.2012.07.012

    Article  CAS  Google Scholar 

  • Martinelli F, Remorini D, Saia S, Massai R, Tonutti P (2013) Metabolic profiling of ripe olive fruit in response to moderate water stress. Sci Hortic (Amsterdam) 159:52–58. https://doi.org/10.1016/j.scienta.2013.04.039

    Article  CAS  Google Scholar 

  • Meyer AH, Wooldridge J, Dames JF (2015) Variation in urease and β-glucosidase activities with soil depth and root density in a Cripp’s pink/M7 apple orchard under conventional and organic management. South Afr J Plant Soil 32:227–234. https://doi.org/10.1080/02571862.2015.1053155

    Article  Google Scholar 

  • Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59:451–480

    Article  CAS  Google Scholar 

  • Noiraud N, Maurousset L, Lemoine R (2001) Transport of polyols in higher plants. Plant Physiol Biochem 39:717–728

    Article  CAS  Google Scholar 

  • Pagliarani C, Casolo V, Ashofteh Beiragi M, Cavalletto S, Siciliano I, Schubert A, Gullino ML, Zwieniecki MA, Secchi F (2019) Priming xylem for stress recovery depends on coordinated activity of sugar metabolic pathways and changes in xylem sap pH. Plant Cell Environ 42:1775–1787. https://doi.org/10.1111/pce.13533

    Article  CAS  PubMed  Google Scholar 

  • Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J (2017) Neurotoxic effects of linalool and β-pinene on Tribolium castaneum Herbst. Molecules 22:2052

    Article  Google Scholar 

  • Palese AM, Pergola M, Favia M, Xiloyannis C, Celano G (2013) A sustainable model for the management of olive orchards located in semi-arid marginal areas: some remarks and indications for policy makers. Environ Sci Pol 27:81–90. https://doi.org/10.1016/j.envsci.2012.11.001

    Article  Google Scholar 

  • Palese AM, Vignozzi N, Celano G, Agnelli AE, Pagliai M, Xiloyannis C (2014) Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil Tillage Res 144:96–109. https://doi.org/10.1016/j.still.2014.07.010

    Article  Google Scholar 

  • Pascazio S, Crecchio C, Ricciuti P, Palese AM, Xiloyannis C, Sofo A (2015) Phyllosphere and carposphere bacterial communities in olive plants subjected to different cultural practices. Int J Plant Biol 6. https://doi.org/10.4081/pb.2015.6011

  • Pascazio S, Crecchio C, Scagliola M, Mininni AN, Dichio B, Xiloyannis C, Sofo A (2018) Microbial-based soil quality indicators in irrigated and rainfed soil portions of Mediterranean olive and peach orchards under sustainable management. Agric Water Manag 195:172–179. https://doi.org/10.1016/j.agwat.2017.10.014

    Article  Google Scholar 

  • Rao G, Liu X, Zha W et al (2017) Metabolomics reveals variation and correlation among different tissues of olive (Olea europaea L.). Biol Open 6:1317–1323. https://doi.org/10.1242/bio.025585

    Article  CAS  Google Scholar 

  • Rhodes D, Handa S, Bressan RA (1986) Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol 82:890–903

    Article  CAS  Google Scholar 

  • Saniewski M, Saniewska A, Kanlayanarat S (2007) Biological activities of tropolone and hinokitiol: the tools in plant physiology and their practical use. International conference on quality Management in Supply Chains of ornamentals pp 133-142

  • Sansone SA, Schober D, Atherton HJ, Fiehn O, Jenkins H, Rocca-Serra P, Rubtsov DV, Spasic I, Soldatova L, Taylor C, Tseng A, Viant MR, Ontology Working Group Members (2007) Metabolomics standards initiative: ontology working group work in progress. Metabolomics 3:249–256

    Article  CAS  Google Scholar 

  • Saponari M, Giampetruzzi A, Loconsole G, Boscia D, Saldarelli P (2019) Xylella fastidiosa in olive in Apulia: where we stand. Phytopathol 109:175–186

    Article  CAS  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    CAS  PubMed  Google Scholar 

  • Schroder JL, Zhang H, Girma K, Raun WR, Penn CJ, Payton ME (2011) Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci Soc Am J 75:957–964. https://doi.org/10.2136/sssaj2010.0187

    Article  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane NA+/H+ antiporter SOS1 controls long-distance NA+ transport in plants. Plant Cell 14:465–477. https://doi.org/10.1105/tpc.010371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14:407–426

    Article  CAS  Google Scholar 

  • Sofo A, Ciarfaglia A, Scopa A, Camele I, Curci M, Crecchio C, Xiloyannis C, Palese AM (2014) Soil microbial diversity and activity in a Mediterranean olive orchard using sustainable agricultural practices. Soil Use Manag 30:160–167. https://doi.org/10.1111/sum.12097

    Article  Google Scholar 

  • Sofo A, Fausto C, Mininni AN, Dichio B, Lucini L (2019a) Soil management type differentially modulates the metabolomic profile of olive xylem sap. Plant Physiol Biochem 139:707–714. https://doi.org/10.1016/j.plaphy.2019.04.036

    Article  CAS  PubMed  Google Scholar 

  • Sofo A, Ricciuti P, Fausto C, Mininni AN, Crecchio C, Scagliola M, Malerba AD, Xiloyannis C, Dichio B (2019b) The metabolic and genetic diversity of soil bacterial communities depends on the soil management system and C/N dynamics: the case of sustainable and conventional olive groves. Appl Soil Ecol 137:21–28. https://doi.org/10.1016/j.apsoil.2018.12.022

    Article  Google Scholar 

  • Tabatabai MA, Bremner JM (1972) Assay of urease activity in soils. Soil Biol Biochem 4:479–487. https://doi.org/10.1016/0038-0717(72)90064-8

    Article  CAS  Google Scholar 

  • Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Višnjevec AM, Valenčič V, Hladnik T et al (2018) Impact of weather conditions and drought stress on primary and secondary metabolites of olives from Slovenian Istra. Acta Horticulturae:69–74

  • Xylogiannis E, Sofo A, Dichio B, Montanaro G, Mininni AN (2020) Root−to−shoot signaling and leaf water−use efficiency in peach trees under localized irrigation. Agronomy 10. https://doi.org/10.3390/agronomy10030437

  • Youssefi F, Brown PH, Weinbaum SA (2000) Relationship between tree nitrogen status, xylem and phloem sap amino acid concentrations, and apparent soil nitrogen uptake, by almond trees (Prunus dulcis). J Hortic Sci Biotechnol 75:62–68. https://doi.org/10.1080/14620316.2000.11511201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Academic Spin off ‘Agreenment’ and the agronomist Fabio Ingrosso for orchards management and for the field operations applied according to the sustainable management protocols. Vittorio Falco e Leone D'amico for technical assistance in the field and in the laboratory during the xylem sap extraction. We are also thankful to Dr. Maddalena Curci and Mrs. Rosaria Mininni for their technical support in soil chemical analyses.

The paper has been written within the frame of the Call for Proposals of Agriculture Service of the Apulia Region, Italian Regional Project GE.S.Oliv ‘Tecniche di Gestione Sostenibile dell’OLIVeto e valutazione delle interazioni pianta-patogeno per prevenire e controllare l’infezione di Xylella fastidiosa (CoDiRO) nel Salento e nelle zone limitrofe a rischio contagio.’ CUP: B36J16002200007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba N. Mininni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Zucong Cai.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Table S1

(XLSX 352 kb)

Table S2

(XLSX 696 kb)

Table S3

(XLSX 82 kb)

Table S4

(XLSX 10 kb)

Table S5

(XLSX 34 kb)

Table S6

(XLSX 20 kb)

Table S7

(XLSX 10 kb)

Table S8

(XLSX 13 kb)

Table S9

(XLSX 36 kb)

ESM 1

(DOCX 2060 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fausto, C., Araniti, F., Mininni, A.N. et al. Differential olive grove management regulates the levels of primary metabolites in xylem sap. Plant Soil 460, 281–296 (2021). https://doi.org/10.1007/s11104-020-04800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04800-0

Keywords