Abstract
Aims
Fire regimes are key drivers of ecosystem dynamics and are changing worldwide. Uncertainty about how fire history affects responses to individual fires hampers predictions of fire impacts on important ecosystem functions such as C cycling. Thus, we assessed how fire and fire history affect soil CO2 flux and aboveground net primary production (ANPP).
Methods
We utilized a 35-year fire frequency experiment in a mesic grassland to quantify how two aspects of fire history, long-term fire frequency (fire every one, two, or four years, or no fire) and number of years elapsed since the most recent fire, affect soil CO2 flux. We used long-term annual records from the same grassland to compare this to the effect of fire history on ANPP.
Results
Historic fire frequency altered the soil CO2 flux response to fire, with greater post-fire stimulation in grassland burned annually than in grassland burned less frequently (~100% vs. ~44% increase over long-term unburned grassland). The flux increase persisted for up to two years after fire. Though fire also stimulated ANPP, this increase did not vary by long-term fire frequency and did not persist into later years.
Conclusions
Fire history modifies the soil CO2 flux response to individual fires in this grassland. Predicting the dynamics of this important C flux will require considering not only the presence vs. absence of fire, but also fire history.
This is a preview of subscription content, access via your institution.




Data availability
The data generated during this study are available in the Colorado State University Libraries repository [https://doi.org/10.25675/10217/203620], and the ANPP data analyzed for this study are available from the LTER Network Data repository [https://doi.org/10.6073/pasta/38de94ec00e7d553197910b835c37b7d].
Abbreviations
- (ANPP):
-
Aboveground net primary production
- (KPBS):
-
Konza Prairie Biological Station
References
Adachi M, Ito A, Yonemura S, Takeuchi W (2017) Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. J Environ Manag 200:97–104. https://doi.org/10.1016/j.jenvman.2017.05.076
Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT (2017) A human- driven decline in global burned area. Science 356:1356–1362. https://doi.org/10.1126/science.aal4108
Archibald S, Nickless A, Govender N, Scholes RJ, Lehsten V (2010a) Climate and the inter-annual variability of fire in southern Africa: a meta-analysis using long-term field data and satellite-derived burnt area data. Glob Ecol Biogeogr 19(6):794–809. https://doi.org/10.1111/j.1466-8238.2010.00568.x
Archibald S, Scholes RJ, Roy DP, Roberts G, Boschetti L (2010b) Southern African fire regimes as revealed by remote sensing. Int J Wildland Fire 19(7):861–878. https://doi.org/10.1071/WF10008
Archibald S, Staver AC, Levin SA (2012) Evolution of human- driven fire regimes in Africa. PNAS 109(3):847–852. https://doi.org/10.1073/pnas.1118648109
Archibald S, Lehmann CER, Gomez-Dans JL, Bradstock RA (2013) Defining pyromes and global syndromes of fire regimes. PNAS 110(16):6442–6447. https://doi.org/10.1073/pnas.1211466110
Beringer J, Hutley LB, Tapper NJ, Cernusak LA (2007) Savanna fires and their impact on net ecosystem productivity in North Australia. Glob Chang Biol 13(5):990–1004. https://doi.org/10.1111/j.1365-2486.2007.01334.x
Bond WJ (2005) Large parts of the world are brown or black: a different view on the “green world” hypothesis. J Veg Sci 16(3):261–266. https://doi.org/10.1111/j.1654-1103.2005.tb02364.x
Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394. https://doi.org/10.1016/j.tree.2005.04.025
Bond WJ, Midgley GF, Woodward FI (2003) What controls south African vegetation – climate or fire? S Afr J Bot 69:79–91. https://doi.org/10.1016/S0254-6299(15)30362-8
Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538. https://doi.org/10.1111/j.1469-8137.2004.01252.x
Bond-Lamberty B (2018) New techniques and data for understanding the global soil respiration flux. Earth’s Future 6:1176–1180. https://doi.org/10.1029/2018EF000866
Bond-Lamberty B, Thomson AM (2010) A global database of soil respiration data. Biogeosciences 7(6):1915–1926. https://doi.org/10.5194/bg-7-1915-2010
Bond-Lamberty B, Epron D, Harden JW, Harmon ME, Hoffman FM, Kumar J, McGuire AD, Vargas R (2016) Estimating heterotrophic respiration at large scales: challenges, approaches, and next steps. Ecosphere 7(6). https://doi.org/10.1002/ecs2.1380
Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, Pyne SJ (2009) Fire in the earth system. Science 324(5926):481–484. https://doi.org/10.1126/science.1163886
Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) The human dimension of fire regimes on earth. J Biogeogr 38(12):2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x
Bragg TB (1982) Seasonal variations in fuel and fuel consumption by fires in a bluestem prairie. Ecology 63(1):7–11. https://doi.org/10.2307/1937024
Bragg TB, Hulbert LC (1976) Woody plant invasion of unburned Kansas bluestem prairie. J Range Manag 29(1):19–23. https://doi.org/10.2307/3897682
Bremer DJ, Ham JM, Owensby CE, Knapp AK (1998) Responses of soil respiration to clipping and grazing in a Tallgrass prairie. J Environ Qual 27(6):1539–1548. https://doi.org/10.2134/jeq1998.00472425002700060034x
Briggs JM, Knapp AK, Blair JM, Heisler JL, Hoch GA, Lett MS, McCarron JK (2005) An ecosystem in transition: causes and consequences of the conversion of Mesic grassland to shrubland. BioScience 55:243–254. https://doi.org/10.1641/0006-3568(2005)055[0243:AEITCA]2.0.CO;2
Buma B (2015) Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere 6(4):1–15. https://doi.org/10.1890/ES15-00058.1
Carson CM, Zeglin LH (2018) Long-term fire management history affects N-fertilization sensitivity, but not seasonality, of grassland soil microbial communities. Soil Biol Biochem 121:231–239. https://doi.org/10.1016/j.soilbio.2018.03.023
Collins SL, Calabrese LB (2012) Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie. J Veg Sci 23(3):563–575. https://doi.org/10.1111/j.1654-1103.2011.01369.x
Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280(5364):745–747. https://doi.org/10.1126/science.280.5364.745
Connell RK, Nippert JB, Blair JM (2020) Three Decades of Divergent Land Use and Plant Community Change Alters Soil C and N Content in Tallgrass Prairie. J Geophys Res Biogeosci 125
Dixon AP, Faber-Langendoen D, Josse C, Morrison J, Loucks CJ (2014) Distribution mapping of world grassland types. J Biogeogr 41(11):2003–2019. https://doi.org/10.1111/jbi.12381
Ellicott E, Vermote E, Giglio L, Roberts G (2009) Estimating biomass consumed from fire using MODIS FRE. Geophys Res Lett 36(13):L13401. https://doi.org/10.1029/2009GL038581
Fang C, Moncrieff JB (2005) The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil 268:243–253
Fest BJ, Livesley SJ, von Fischer JC, Arndt SK (2015) Repeated fuel reduction burns have little long-term impact on soil greenhouse gas exchange in a dry sclerophyll eucalypt forest. Agric For Meteorol 201:17–25
Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18(5):483–507. https://doi.org/10.1071/WF08187
Frost PGH (1999) Fire in southern African woodlands: origins, impacts, effects, and control. Proceedings of an FAO Meeting on Public Policies Affecting Forest Fires, 138(January), 181–205
Fuhlendorf SD, Limb RF, Engle DM, Miller RF (2011) Assessment of prescribed fire as a conservation practice. In: Briske DD (ed) Conservation benefits of rangeland practices: assessment, recommendations and knowledge gaps. USDA Natural Resources Conservation Service, Washington, DC, pp 75–104
Gale WJ, Kirkham MB, Kanemasu ET, Owensby CE (1990) Net carbon dioxide exchange in canopies of burned and unburned tallgrass prairie. Theor Appl Climatol 42:237–244. https://doi.org/10.1007/BF00865984
Garcia FO, Rice CW (1994) Microbial biomass dynamics in tallgrass prairie. Soil Sci Soc Am J 58(3):816–823. https://doi.org/10.2136/sssaj1994.03615995005800030026x
Gill AM (1975) Fire and the Australian flora: a review. Aust For 38:4–25. https://doi.org/10.1080/00049158.1975.10675618
Gough CM, Vogel CS, Harrold KH, George K, Curtis PS (2007) The legacy of harvest and fire on ecosystem carbon storage in a north temperate forest. Glob Chang Biol 13:1935–1949. https://doi.org/10.1111/j.1365-2486.2007.01406.x
Guiterman CH, Margolis EQ, Baisan CH, Falk DA, Allen CD, Swetnam TW (2019) Spatiotemporal variability of human–fire interactions on the Navajo nation. Ecosphere 10(11):e02932. https://doi.org/10.1002/ecs2.2932
Guyette RP, Muzika RM, Dey DC (2002) Dynamics of an anthropogenic fire regime. Ecosystems 5(5):472–486. https://doi.org/10.1007/s10021-002-0115-7
Hadley EB, Kieckhefer BJ (1963) Productivity of two prairie grasses in relation to fire frequency. Ecology 44:389–395. https://doi.org/10.2307/1932186
Ham JM, Owensby CE, Coyne PI, Bremer DJ (1995) Fluxes of CO2 and water vapor from a prairie ecosystem exposed to ambient and elevated atmospheric CO2. Agric For Meteorol 77:73–93. https://doi.org/10.1016/0168-1923(95)02230-U
Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005) Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Glob Chang Biol 11(2):322–334. https://doi.org/10.1111/j.1365-2486.2005.00899.x
Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12:4121–4132. https://doi.org/10.5194/bg-12-4121-2015
Hayes DC, Seastedt TR (1987) Root dynamics of tallgrass prairie in wet and dry years. Can J Bot 65:787–791. https://doi.org/10.1139/b87-105
Hoover DL, Knapp AK, Smith MD (2016) The immediate and prolonged effects of climate extremes on soil respiration in a Mesic grassland. J Geophys Res Biogeosci 121(4):1034–1044. https://doi.org/10.1002/2015JG003256
Hughes TP, Kerry JT, Connolly SR, Baird AH, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Jacobson M, Liu G, Pratchett MS, Skirving W, Torda G (2019) Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Chang 9:40–43. https://doi.org/10.1038/s41558-018-0351-2
Hui D, Jackson RB (2006) Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169(1):85–93. https://doi.org/10.1111/j.1469-8137.2005.01569.x
Hulbert LC (1969) Fire and litter effects in undisturbed bluestem prairie in Kansas. Ecology 50:874–877. https://doi.org/10.2307/1933702
Hulbert LC (1986) Fire effects on tallgrass prairie vegetation. In: Clambey GK, Pemble RH (eds.) The prairie: past, present and future. Proceedings of the ninth North American prairie conference. Tri-College University Center for Environmental Studies, North Dakota State University, Fargo
Irvine J, Las BE, Hibbard KA (2007) Postfire carbon pools and fluxes in semiarid ponderosa pine in Central Oregon. Glob Chang Biol 13:1748–1760. https://doi.org/10.1111/j.1365-2486.2007.01368.x
Jackson RB, Banner JL, Jobbágy EG, Pockman WT, Wall DH (2002) Ecosystem carbon loss with woody plant invasion of grasslands. Nature 418:623–626. https://doi.org/10.1038/nature00910
Jia X, Shao M, Wei X (2012) Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agric For Meteorol 166-167:32–40. https://doi.org/10.1016/j.agrformet.2012.05.022
Jian J, Steele MK, Thomas RQ, Day SD, Hodges SC (2018) Constraining estimates of global soil respiration by quantifying sources of variability. Glob Chang Biol 24:4143–4159. https://doi.org/10.1111/gcb.14301
Johnson LC, Matchett JR (2001) Fire and grazing regulate belowground processes in tallgrass prairie. Ecology 82:3377–3389. https://doi.org/10.1890/0012-9658(2001)082[3377:FAGRBP]2.0.CO;2
Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GLW, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14(7):369–378. https://doi.org/10.1002/fee.1311
Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette J-J, Razinger M, Schultz MG, Suttie M, van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554. https://doi.org/10.5194/bg-9-527-2012
Kasischke ES, Penner JE (2004) Improving global estimates of atmospheric emissions from biomass burning. J Geophys Res-Atmos 109:D14S01. https://doi.org/10.1029/2004JD004972
Kim J, Verma SB, Clement RJ (1992) Carbon dioxide budget in a temperate grassland ecosystem. J Geophys Res-Atmos 97:6057–6063. https://doi.org/10.1029/92JD00186
Kitchen DJ, Blair JM, Callaham MA (2009) Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie. Plant Soil 323:235–247. https://doi.org/10.1007/s11104-009-9931-2
Knapp AK (1985) Effect of fire and drought on the ecophysiology of Andropogon gerardii and Panicum virgatum in a tallgrass prairie. Ecology 66(4):1309–1320. https://doi.org/10.2307/1939184
Knapp AK (1986) Postfire water relations, production, and biomass allocation in the shrub, Rhus glabra, in tallgrass prairie. Bot Gaz 147(1):90–97. https://doi.org/10.1086/337573
Knapp AK, Seastedt TR (1986) Detritus accumulation limits productivity of tallgrass prairie. Bioscience 36:662–668. https://doi.org/10.2307/1310387
Knapp AK, Briggs JM, Hartnett DC, Collins SL (1998a) Grassland dynamics: long-term ecological research in tallgrass prairie. Oxford University Press, New York
Knapp AK, Conard SL, Blair JM (1998b) Determinants of soil CO2 flux from a sub-humid grassland: effect of fire and fire history. Ecol Appl 8:760–770. https://doi.org/10.1890/1051-0761(1998)008[0760:DOSCFF]2.0.CO;2
Knorr W, Arneth A, Jiang L (2016) Demographic controls of future global fire risk. Nat Clim Chang 6:781–785. https://doi.org/10.1038/nclimate2999
Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon—part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1(1):351–365. https://doi.org/10.5194/soil-1-351-2015
Kucera CL, Dahlman RC (1968) Root-rhizome relationships in fire-treated stands of big bluestem, Andropogon gerardii Vitman. Am Midl Nat 80(1):268–271. https://doi.org/10.2307/2423615
Laris P (2002) Burning the seasonal mosaic: preventative burning strategies in the wooded savanna of southern Mali. Hum Ecol 30:155–186. https://doi.org/10.1023/A:1015685529180
Lauenroth WK, Sala OE (1992) Long-term forage production of north American shortgrass steppe. Ecol Appl 2(4):397–403. https://doi.org/10.2307/1941874
Le Page Y, Oom D, Silva JMN, Jönsson P, Pereira JMC (2010) Seasonality of vegetation fires as modified by human action: observing the deviation from eco-climatic fire regimes. Glob Ecol Biogeogr 19(4):575–588. https://doi.org/10.1111/j.1466-8238.2010.00525.x
Le Quéré C, Andrew RM, Friedlingstein P, Sitch S, Pongratz J, Manning AC et al (2017) Global carbon budget 2017. Earth Syst Sci Data Discuss:1–79. https://doi.org/10.5194/essd-2017-123
Lett MS, Knapp AK, Briggs JM, Blair JM (2004) Influence of shrub encroachment on aboveground net primary productivity and carbon and nitrogen pools in a Mesic grassland. Can J Bot 82(9):1363–1370. https://doi.org/10.1139/b04-088
McCarron JK, Knapp AK, Blair JM (2003) Soil C and N responses to woody plant expansion in a Mesic grassland. Plant Soil 257:183–192. https://doi.org/10.1023/A:1026255214393
Mielnick PC, Dugas WA (2000) Soil CO2 flux in a tallgrass prairie. Soil Biol Biochem 32(2):221–228. https://doi.org/10.1016/S0038-0717(99)00150-9
Mouillot F, Field CB (2005) Fire history and the global carbon budget: a 1°× 1° fire history reconstruction for the 20th century. Glob Chang Biol 11:398–420. https://doi.org/10.1111/j.1365-2486.2005.00920.x
Norris MD, Blair JM, Johnson LC (2001) Land cover change in eastern Kansas: litter dynamics of closed-canopy eastern redcedar forests in tallgrass prairie. Can J Bot 79:214–222. https://doi.org/10.1139/b00-159
O'Connell AM (1987) Litter decomposition, soil respiration and soil chemical and biochemical properties at three contrasting sites in karri (Eucalyptus diversicolor F. Muell.) forests of South-Western Australia. Aust J Ecol 12:31–40. https://doi.org/10.1111/j.1442-9993.1987.tb00925.x
Ojima DS, Schimel DS, Parton WJ, Owensby CE (1994) Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84. https://doi.org/10.1007/BF02390180
Pellegrini AFA (2016) Nutrient limitation in tropical savannas across multiple scales and mechanisms. Ecology 97:313–324. https://doi.org/10.1890/15-0869.1
Pellegrini AFA, Jackson RB (2020) The long and short of it: a review of the timescales of how fire affects soil using the pulse-press framework. In: Dumbrell AJ, Turner EC, Fayle TM (eds.) Advances in ecological research. Tropical ecosystems in the 21st century (Vol. 62, pp. 147–171). Elsevier. https://doi.org/10.1016/bs.aecr.2020.01.010
Pellegrini AFA, Hedin LO, Staver AC, Govender N (2015) Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Ecology 96:1275–1285. https://doi.org/10.1890/14-1158.1
Pellegrini AFA, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 53:194–198. https://doi.org/10.1038/nature24668
Pendall E, Bachelet D, Conant RT, El Masri B, Flanagan LB, Knapp AK, Liu J, Liu S, Schaeer, SM (2018) Chapter 10: grasslands. In: Cavallaro N, Shrestha G, Birdsey R, Mayes MA, Najjar RG, Reed SC, Romero-Lankao P, Zhu Z (eds.) Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (pp. 399-427). U.S. Global Change Research Program, Washington, DC. https://doi.org/10.7930/SOCCR2.2018.Ch10
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2020). nlme: linear and nonlinear mixed effects models. R package version 3.1–148, https://CRAN.R-project.org/package=nlme
Plaza-Álvarez PA, Lucas-Borja ME, Sagra J, Moya D, Fontúrbel T, De las Heras J (2017) Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus nigra Arn. ssp. salzmannii) Monospecific and Mixed Forest Stands. Forests 8:248. https://doi.org/10.3390/f8070248
Probert JR, Parr CL, Holdo RM, Anderson TM, Archibald S, Mustaphi CJC, Dobson AP, Donaldson JE, Hopcraft GC, Hempson GP, Morrison TA, Beale CM (2019) Anthropogenic modifications to fire regimes in the wider Serengeti–Mara ecosystem. Glob Chang Biol 25(10):3406–3423. https://doi.org/10.1111/gcb.14711
Pujia Y, Hongtao J, Qiang L, Wei Z, Fei L, Daowei Z (2013) Effect of fire, plowing and N addition on soil carbon dynamics in Songnen grassland, Northeast China. Range Manag Agroforest 34(2):145–150
Qin C, Zhu K, Chiariello NR, Field CB, Peay KG (2019) Fire history and plant community composition outweigh decadal multi-factor global change as drivers of microbial composition in an annual grassland. J Ecol 108(2):611–625. https://doi.org/10.1111/1365-2745.13284
R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/
Ransom MD, Rice CW, Todd TC, Wehmueller WA (1998) Soils and soil biota. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL (eds) Grassland dynamics: long-term ecological research in tallgrass prairie. Oxford University Press, New York, pp 48–66
Ratajczak Z, Nippert JB, Briggs JM, Blair JM (2014) Fire dynamics distinguish grasslands, shrublands and woodlands as alternative attractors in the central Great Plains of North America. J Ecol 102(6):1374–1385. https://doi.org/10.1111/1365-2745.12311
Richards AE, Cook GD, Lynch BT (2011) Optimal fire regimes for soil carbon storage in tropical savannas of northern Australia. Ecosystems 14:503–518. https://doi.org/10.1007/s10021-011-9428-8
Risser PG, Birney EC, Blocker HD, May SW, Parton WJ, Wiens JA (eds) (1981) The true prairie ecosystem. (US/IBP synthesis series, vol. 16). Hutchinson Ross, Stroudsburg
Sala OE, Gherardi LA, Reichmann LG, Jobbagy EG, Peters DP (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc B 367:3135–3144. https://doi.org/10.1098/rstb.2011.0347
Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 5(1):81–91. https://doi.org/10.4155/cmt.13.77
Seastedt TR, Briggs JM, Gibson DJ (1991) Controls of nitrogen limitation in tallgrass prairie. Oecologia 87(1):72–79. https://doi.org/10.1007/BF00323782
Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climate Change 2:207–247. https://doi.org/10.1007/BF00137988
Shi Y, Matsunaga T, Saito M, Yamaguchi Y, Chen X (2015) Comparison of global inventories of CO2 emissions from biomass burning during 2002-2011 derived from multiple satellite products. Environ Pollut 206:479–487. https://doi.org/10.1016/j.envpol.2015.08.009
Silver WL, Ryals R, Eviner V (2010) Soil carbon pools in California’s annual grassland ecosystems. Rangel Ecol Manag 63(1):128–136. https://doi.org/10.2111/Rem-D-09-00106.1
Smith DL, Johnson L (2004) Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85:3348–3361. https://doi.org/10.1890/03-0576
Smith P, Fang CM, Dawson JJC, Moncrie JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43. https://doi.org/10.1016/S0065-2113(07)00001-6
Soussana J-F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T, Arrouays D (2004) Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag 20(2):219–230. https://doi.org/10.1111/j.1475-2743.2004.tb00362.x
Strong AL, Johnson TP, Chiariello NR, Field CB (2017) Experimental fire increases soil carbon dioxide efflux in a grassland long-term multifactor global change experiment. Glob Chang Biol 23(5):1975–1987. https://doi.org/10.1111/gcb.13525
Sun Q, Meyer WS, Koerber GR, Marschner P (2016) A wildfire event influences ecosystem carbon fluxes but not soil respiration in a semi-arid woodland. Agric For Meteorol 226-227:57–66. https://doi.org/10.1016/j.agrformet.2016.05.019
van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth Syst Sci Data 9:697–720. https://doi.org/10.5194/essd-9-697-2017
Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increases western US forest wildfire activity. Science 313:940–943. https://doi.org/10.1126/science.1128834
Williams RJ, Hutley LB, Cook GD, Russell-Smith J, Edwards A, Chen X (2004) Assessing the carbon sequestration potential of Mesic savannas in the Northern Territory, Australia: approaches, uncertainties and potential impacts of fire. Funct Plant Biol 31(5):415–422. https://doi.org/10.1071/FP03215
Xu M, Shang H (2016) Contribution of soil respiration to the global carbon equation. J Plant Physiol 203:16–28. https://doi.org/10.1016/j.jplph.2016.08.007
Xu W, Wan S (2008) Water- and plant-mediated responses of soil respiration to topography, fire, and nitrogen fertilization in a semiarid grassland in northern China. Soil Biol Biogeochem 40:679–687. https://doi.org/10.1016/j.soilbio.2007.10.003
Zhao Z, Peng C, Yang Q, Meng F-R, Song X, Chen S, Epule TE, Li P, Zhu Q (2017) Model prediction of biome-specific global soil respiration from 1960 to 2012. Earth’s Future 5(7):715–729. https://doi.org/10.1002/2016EF000480
Acknowledgments
IJS acknowledges support by a Predoctoral Fellowship [award 2019-67011-29615] from the USDA National Institute of Food and Agriculture. We thank the Konza Prairie Biological Station and staff and the National Science Foundation Long-Term Ecological Research program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Stefan K. Arndt.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
ESM 1
(DOCX 448 kb)
Rights and permissions
About this article
Cite this article
Slette, I.J., Liebert, A. & Knapp, A.K. Fire history as a key determinant of grassland soil CO2 flux. Plant Soil 460, 579–592 (2021). https://doi.org/10.1007/s11104-020-04781-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11104-020-04781-0
Keywords
- Fire
- Grassland
- Soil CO2 flux
- Soil respiration
- Aboveground net primary production
- Carbon cycling
- Ecosystem