Skip to main content
Log in

Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

This study aimed to establish elemental profiles and to spatially resolve the elemental distribution in five New Caledonian woody Ni hyperaccumulator plant species (Geissois pruinosa var. pruinosa, Homalium francii, Hybanthus austrocaledonicus, Psychotria gabriellae, and Pycnandra acuminata) originating from the Cunoniaceae, Salicaceae, Violaceae, Rubiaceae, and Sapotaceae families respectively.

Methods

Using synchrotron-based micro-X-ray Fluorescence (μXRF) imaging of different plant tissues, from the roots to the shoots and reproductive organs, this study aimed to clarify how distribution patterns of nickel, and other physiologically relevant elements, differ between these species.

Results

The results show that the tissue-level and cellular-level distribution of nickel in P. gabriellae, H. austrocaledonicus, G. pruinosa var. pruinosa, and H. francii conform with the majority of studied Ni hyperaccumulator plant species globally, including (temperate) herbaceous species, with localization mainly in epidermal cells and phloem bundles. However, P. acuminata has nickel-rich laticifers, which constitute an independent network of cells that is parallel to the vascular bundles and are the main sink for nickel.

Conclusions

Synchrotron-based micro-X-ray Fluorescence (μXRF) is a powerful method for investigating how metal hyperaccumulation influences acquisition and spatial distribution of a wide range of elements. This non-invasive method enables investigation into the in vivo distribution of multiple elements and the structure and organisation of cells (e.g. laticifers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adıgüzel N, Reeves RD (2012) Important serpentine areas of Turkey and distribution patterns of serpentine endemics and nickel accumulators. Bocconea 24:7–17

    Google Scholar 

  • Andresen E, Peiter E, Küpper H (2018) Trace metal metabolism in plants. J Exp Bot 69(5):909–954

    CAS  PubMed  Google Scholar 

  • Antić-Mladenović S, Rinklebe J, Frohne T, Stärk H-J, Wennrich R, Tomić Z, Ličina V (2011) Impact of controlled redox conditions on nickel in a serpentine soil. J Soils Sediments 11(3):406–415

    Google Scholar 

  • Bani A, Echevarria G, Sulçe S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293(1–2):79–89

    CAS  Google Scholar 

  • Becquer T, Bourdon E, Pétard J (1995). Disponibilité du nickel le long d'une toposéquence de sols développés sur roches ultramafiques de Nouvelle-Calédonie. Comptes Rendus de l'Académie des Sciences Série 2a 321:585–592

  • Berazaín R, de la Fuente V, Rufo L, Rodríguez N, Amils R, Díez-Garretas B, Sánchez-Mata D, Asensi A (2007) Nickel localization in tissues of different hyperaccumulator species of Euphorbiaceae from ultramafic areas of Cuba. Plant Soil 293(1):99–106

    Google Scholar 

  • Bhatia NP, Orlic I, Siegele R, Ashwath N, Baker AJM, Walsh KB (2003) Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytol 160:479–448

    CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Orlic I, Siegele R, Ashwath N, Baker AJM (2004) Studies on spatial distribution of nickel in leaves and stems of the metal hyperaccumulator Stackhousia tryonii bailey using nuclear microprobe (micro-PIXE) and EDXS techniques. Funct Plant Biol 31(11):1061–1074

    CAS  PubMed  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer Knudsen J, Marshall AT (2004) Subcellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27(6):705–716

    CAS  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Google Scholar 

  • Brearley F (2005) Nutrient limitation in a Malaysian ultramafic soil. J Trop For Sci 17(4):596–609

    Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242

    CAS  Google Scholar 

  • Broadhurst CL, Tappero RV, Maugel TK, Erbe EF, Sparks DL, Chaney RL (2009) Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant Soil 314(1/2):35–48

    Google Scholar 

  • Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants for phytomining. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, Oxon, pp 327–356

    Google Scholar 

  • Brooks RR, Lee J, Jaffré T (1974) Some New Zealand and New Caledonia plant accumulators of nickel. J Ecol 62:493–499

    CAS  Google Scholar 

  • Brooks RR, Morrison RS, Reeves RDR, Dudley TRT, Akman YY (1979) Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proceedings of the Royal Society of London. Series B 203:387–403

    CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3(9):359–362

    Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, Perrier N, Wedd AG, O’Hair RAJ, Baker AJM, Kolev SD (2008) LC–MS and GC–MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand. Phytochemistry 69:240–251

    CAS  PubMed  Google Scholar 

  • Cardiano P, Cigala RM, Crea F, Giacobello F, Giuffre O, Irto A, Lando G, Sammartano (2017) Sequestration of aluminium(III) by different natural and synthetic organic and inorganic ligands in aqueous solution. Chemosphere 186:535–545

    CAS  PubMed  Google Scholar 

  • Chaney RL (1983) Potential effects of waste constituents on the food chain. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Park Ridge, NJ, Noyes Data Corp, pp 152–240

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36(5):1429–1443

    CAS  PubMed  Google Scholar 

  • de Jonge MD, Vogt S (2010) Hard X-ray fluorescence tomography-an emerging tool for structural visualization. Curr Opin Struct Biol 20:606–614

    PubMed  Google Scholar 

  • Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: Farming for metals: extracting unconventional resources using plants: mineral resources reviews series. Springer International Publishing, Cham, pp 135–156

    Google Scholar 

  • Echevarria G, Morel J, Fardeau J, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27(5):1064–1070

    CAS  Google Scholar 

  • Echevarria G, Massoura ST, Sterckeman T, Becquer T, Schwartz C, Morel JL (2006) Assessment and control of the bioavailability of nickel in soils. Environ Toxicol Chem 25(3):643–651

    CAS  PubMed  Google Scholar 

  • Erskine PD, Lee G, Fogliani B, L’Huillier L, McCoy S (2018) Incorporating Hyperaccumulator plants into mine rehabilitation in the Asia-Pacific region. In: van der Ent A, Echevarria G, AJM B, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral resource reviews series. Springer international publishing, Cham, pp 117–133

  • Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng T, Tang Y, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Lett 423:24–35

    CAS  Google Scholar 

  • Farago ME, Mahmoud IEDAW (1983) Plants that accumulate metals (part VI): further studies of an Australian nickel accumulating plant. Minerals and the Environment 5(4):113–121

    CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    CAS  PubMed  Google Scholar 

  • Gei V, Erskine PD, Harris HH, Echevarria G, Mesjasz-Przybyłowicz J, Barnabas AD, Przybyłowicz WJ, Kopittke PM, van der Ent A (2018) Tools for discovery of hyperaccumulator plant species and understanding their ecophysiology. In: van der Ent A, Echevarria G, AJM B, Morel JL (eds) Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants, Mineral resource reviews series. Springer international publishing, Cham, pp 117–133

    Google Scholar 

  • Gei V, Isnard S, Erskine PD, Echevarria G, Fogliani B, Jaffré T, van der Ent A (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc 194(1):1–22

  • Groeber S, Przybyłowicz W, Echevarria G, Montarges-Pelletier E, Barnabas A, Mesjasz-Przybyłowicz J (2015) Fate of nickel and calcium in seedlings of the hyperaccumulator Berkheya coddii during germination. Biol Plant 59(3):560–569

    CAS  Google Scholar 

  • Hopkins HCF, Pillon Y, Hoogland R (2014). Cunoniaceae; Flore de la Nouvelle-Calédonie, Vol 25 Muséum Paris, IRD Marseille 455pp

  • Isnard S, L’Huillier L, Rigault F, Jaffré T (2016) How did the ultramafic soils shape the flora of the new Caledonian hotspot? Plant Soil 403(1):53–76

    CAS  Google Scholar 

  • Jaffré T (1976). Composition chimique et conditions de l’alimentation minérale des plantes sur roches ultrabasiques (Nouvelle Calédonie). Cah ORSTOM Sér Biol 11

  • Jaffré T (1980) Étude écologique du peuplement végétal des sol dérivés de roches ultrabasiques en Nouvelle Calédonie. Travaux et Documents de L’ORSTOM 124. Paris: ORSTOM

  • Jaffré T, Schmid M (1974) Ecophysiologie - Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie, Psychotria douarrei (G. Beauvisage) Däniker. Comptes Rendus de l’Académie des Sciences, Paris 278:1727–1730

    Google Scholar 

  • Jaffré T, Veillon JM (1990) Etude floristique et structurale de deux forêts denses humides sur roches ultrabasiques en Nouvelle-Calédonie. Adansonia 3–4:243–273

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    PubMed  Google Scholar 

  • Jaffré T, Brooks RR, Trow JM (1979) Hyperaccumulation of nickel by Geissois species. Plant Soil 51(1):157–161

    Google Scholar 

  • Jaffré T, Pillon Y, Thomine S, Merlot S (2013) The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants. Front Plant Sci 4(279):1–7

    Google Scholar 

  • Jaffré T, Reeves RD, Baker AJM, van der Ent A (2018) The discovery of nickel hyperaccumulation in the new Caledonian tree Pycnandra acuminata: 40 years on. New Phytol 218:397–400

    PubMed  Google Scholar 

  • Jones MWM, Kopittke PM, Casey L, Reinhardt J, Blamey FPC, van der Ent A (2019) Assessing radiation dose limits for X-ray fluorescence microscopy analysis of plant specimens. Ann bot 125(4):599–610

  • Kachenko AG, Singh B, Bhatia NP, Siegele R (2008) Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthus floribundus var. floribundus using micro-PIXE spectroscopy. Nucl Instrum Methods Phys Res, Sect B 266(4):667–676

    CAS  Google Scholar 

  • Kirkham R, Dunn PA, Kuczewski AJ, Siddons DP, Dodanwela R, Moorhead GF, Ryan CG, De Geronimo G, Beuttenmuller R, Pinelli D et al (2010) The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing. AIP Conference Proceedings 1234(1):240–243

    CAS  Google Scholar 

  • Krämer U (2010) Metal Hyperaccumulation in plants. Annu Rev Plant Biol 61(1):517–534

    PubMed  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Letters 581:2263–2272

  • Kukier U, Chaney RL (2001) Amelioration of nickel phytotoxicity in muck and mineral soils. J Environ Qual 30:1949–1960

    CAS  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 51:2291–2300

    Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1978) The relation between nickel and citric acid in some nickel-accumulating plants. Phytochemistry 17:1033–1035

    CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Lombi E, de Jonge MD, Donner E, Kopittke PM, Howard DL, Kirkham R, Ryan CG, Paterson D (2011) Fast X-ray fluorescence microtomography of hydrated biological samples. PLoS One 6:e20626–e20625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Losfeld G, Mathieu R, L'Huillier L, Fogliani B, Jaffré T, Grison C (2015a) Phytoextraction from mine spoils: insights from New Caledonia. Environ Sci Pollut Res 22(8):5608–5619

    CAS  Google Scholar 

  • Losfeld G, L’Huillier L, Fogliani B, Jaffré T, Grison C (2015b) Mining in new Caledonia: environmental stakes and restoration opportunities. Environ Sci Pollut Res 22(8):5592–5607

    Google Scholar 

  • Martell AE, Smith RM, Motekaitis RJ. (2004). NIST critically selected stability constants of metal complexes database, 8.0. National Institute of standard and technology, Garthersburg, MD

  • Massoura ST, Echevarria G, Leclerc-Cessac E, Morel JL (2005) Response of excluder, indicator, and hyperaccumulator plants to nickel availability in soils. Soil Research 42(8):933–938

    Google Scholar 

  • McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environmental Science & Technology 39(7):2210–2218

    CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Balkwill K (1994) Proton microprobe and X-ray fluorescence investigations of nickel distribution in serpentine flora from South Africa. Nucl Instrum Methods Phys Res Sect B 89:208–212

  • Mesjasz-Przybyłowicz J, Balkwill K, Przybylowicz WJ, Annegarn HJ, Rama DBK (1996a) Similarity of nickel distribution in leaf tissue of two distantly related hyperaccumulating species. In: van der Maesen LJG, van der Burgt XM, van Medenbach de Rooy JM (eds) The Biodiversity of African Plants. Springer, Dordrecht, pp 331–335

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Prozesky VM, Pineda CA (1996b) Elemental distribution in a leaf of Senecio coronatus. Proceedings of the Microscopy Society of Southern Africa 26:68

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Prozesky VM (1997a). Nuclear microprobe investigation of Ni distribution in organs and cells of hyperaccumulating plants. In: 'The ecology of ultramafic and metalliferous areas’: proceedings of the second international conference on serpentine ecology, pp. 223–224

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Prozesky VM, Pineda CA (1997b) Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus. Nucl Instrum Methods Phys Res Sect B 130(1-4):368–373

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Rama DB, Pineda CA (1997c) Elemental distribution in the Ni hyperaccumulator –Senecio anomalochrous. Proceedings of the Microscopy Society of Southern Africa 27:89

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Pineda CA (2001a) Nuclear microprobe studies of elemental distribution in apical leaves of the Ni hyperaccumulator Berkheya coddii. S Afr J Sci 97:591–592

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Rama D, Pineda CA (2001b) Elemental distribution in Senecio anomalochrous, a Ni hyperaccumulator from South Africa. S Afr J Sci 97:593–595

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Barnabas A, Przybyłowicz W (2007) Comparison of cytology and distribution of nickel in roots of Ni hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293:61–78

    Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz W, Barnabas A, van der Ent A (2016) Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo. New Phytol 209:1513–1526

    PubMed  Google Scholar 

  • Nkrumah P, van der Ent A, Echevarria G, Erskine PD (2018) Contrasting nickel and zinc hyperaccumulation in subspecies of Dichapetalum gelonioides from Southeast Asia. Sci Rep 8:9659

  • Paul ALD, Gei V, Isnard S, Fogliani B, Echevarria G, Erskine PD, Jaffré T, Munzinger J, van der Ent A (2020) Exceptional phloem nickel in Hybanthus austrocaledonicus (Violaceae) from New Caledonia. Ann Bot In Press. https://doi.org/10.1093/aob/mcaa112

  • Perrier N, Colin F, Jaffré T, Ambrosi J-P, Rose J, Bottero J-Y (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. Compt Rendus Geosci 336(6):567–577

    CAS  Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888

    PubMed  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    CAS  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics 6(1):105–124

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    CAS  Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293(1):107–119

    CAS  Google Scholar 

  • Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2018a) A global database for hyperaccumulator plants of metal and metalloid trace elements. New Phytol 218:407–411

    PubMed  Google Scholar 

  • Reeves RD, van der Ent A, Baker AJM (2018b) Global distribution and ecology of hyperaccumulator plants. In: van der Ent A, Echevarria G, AJM B, Morel JL (eds) Agromining: extracting unconventional resources from plants, Mineral Resource Reviews series. Springer International Publishing, Cham, pp 75–92

    Google Scholar 

  • Ryan C (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Int J Imaging Syst Technol 11(4):219–230

    Google Scholar 

  • Ryan C, Jamieson D (1993) Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping. Nucl Instrum Methods Phys Res, Sect B 77(1–4):203–214

    Google Scholar 

  • Ryan C, Cousens D, Sie S, Griffin W, Suter G, Clayton E (1990) Quantitative PIXE microanalysis of geological material; using the CSIRO proton microprobe. Nucl Instrum Methods Phys Res, Sect B 47(1):55–71

    Google Scholar 

  • Ryan C, Etschmann B, Vogt S, Maser J, Harland C, Van Achterbergh E, Legnini D (2005) Nuclear microprobe–synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF. Nucl Instrum Methods Phys Res, Sect B 231(1–4):183–188

    CAS  Google Scholar 

  • Ryan CG, Siddons DP, Kirkham R, Dunn PA, Kuczewski A, Moorhead G, De Geronimo G, Paterson DJ, de Jonge MD, Hough RM et al (2010) The new Maia detector system: methods for high definition trace element imaging of natural material. AIP Conference Proceedings 1221(1):9–17

    CAS  Google Scholar 

  • Ryan C, Siddons D, Kirkham R, Li Z, De Jonge M, Paterson D, Kuczewski A, Howard D, Dunn P, Falkenberg G. et al. (2014) Maia X-ray fluorescence imaging: capturing detail in complex natural samples. Journal of Physics: Conference Series: IOP Publishing. 012002

  • Sagner S, Kneer R, Wanner G, Cosson J, Deus-Neumann B, Zenk M (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    CAS  PubMed  Google Scholar 

  • Schaumlöffel D, Ouerdane L, Bouyssiere B, Łobiński R (2003) Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection. J Anal At Spectrom 18:120–127

    Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physiol 53(2):257–277

    CAS  Google Scholar 

  • Siddons D, Kirkham R, Ryan C, De Geronimo G, Dragone A, Kuczewski A, Li Z, Carini G, Pinelli D, Beuttenmuller R, et al. (2014). Maia X-ray microprobe detector array system. Journal of Physics: Conference Series: IOP Publishing 012001

  • Swenson U, Munzinger J (2010) Revision of Pycnandra subgenus Sebertia (Sapotaceae) and a generic key to the family in New Caledonia. Adansonia 32(2):239–249

    Google Scholar 

  • Tappero R, Peltier E, Gräfe M, Heidel K, Ginder-Vogel M, Livi KJT, Rivers ML, Marcus MA, Chaney RL, Sparks DL (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    CAS  PubMed  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2006) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68

    Google Scholar 

  • van der Ent A, Mulligan DM (2015) Multi-element concentrations in plants parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations. J Chem Ecol 41:396–408

    PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1):319–334

    Google Scholar 

  • van der Ent A, Baker A, Van Balgooy M, Tjoa A (2013) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015a) Agromining: farming for metals in the future? Environmental Science & Technology 49(8):4773–4780

    Google Scholar 

  • van der Ent A, Erskine PD, Sumail S (2015b) Ecology of nickel hyperaccumulator plants from ultramafic soils in Sabah (Malaysia). Chemoecology 25(5):243–259

    Google Scholar 

  • van der Ent A, Jaffré T, L’Huillier L, Gibson N, Reeves RD (2015c) The flora of ultramafic soils in the Australia-Pacific region: state of knowledge and research priorities. Aust J Bot 63(4):173–190

    Google Scholar 

  • van der Ent A, Callahan DL, Noller BN, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Barnabas A, Harris HH (2017a) Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia). Sci Rep 7:41861

    PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Przybyłowicz WJ, de Jonge MD, Harris HH, Ryan CG, Tylko G, Paterson DJ, Barnabas AD, Kopittke PM, Mesjasz-Przybyłowicz J (2017b) X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants. New Phytol 218:432–452

    PubMed  Google Scholar 

  • van der Ent A, Cardace D, Tibbett M, Echevarria G (2018a) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169

    Google Scholar 

  • van der Ent A, Harris HH, Erskine PDEG (2018b) Simultaneous hyperaccumulation of nickel and cobalt in Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and speciation. Sci Rep 8:9683

    PubMed  PubMed Central  Google Scholar 

  • van der Ent A, Mulligan DR, Repin R, Erskine PD (2018c) Foliar elemental profiles in the ultramafic flora of Kinabalu Park (Sabah, Malaysia). Ecol Res 33(3):659–674

    Google Scholar 

  • Wang YD, Mesjasz-Przybyłowicz J, Tylko G, Barnabas AD, Przybyłowicz WJ (2013) Micro-PIXE analyses of frozen-hydrated semi-thick biological sections. Nucl Instrum Methods Phys Res, Sect B 306:134–139

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Province Sud de Nouvelle-Calédonie for permission to collect the plant material samples (permits 1503-2016/ARR/DENV and 1206-2018/ARR/DENV), and S. Palermo for access to Monts des Koghis. This research was undertaken at P06 at DESY, a member of the Helmholtz Association (HGF). We would like to thank Gerald Falkenberg for assistance with the experiments. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. A. van der Ent was the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council. V. Gei was the recipient of an Australia Awards PhD Scholarship from the Australian Federal Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony van der Ent.

Additional information

Responsible Editor: Juan Barcelo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 8.58 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gei, V., Echevarria, G., Erskine, P.D. et al. Soil chemistry, elemental profiles and elemental distribution in nickel hyperaccumulator species from New Caledonia. Plant Soil 457, 293–320 (2020). https://doi.org/10.1007/s11104-020-04714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04714-x

Keywords

Navigation