Vertical fine-root distributions in five subalpine forest types shifts with soil properties across environmental gradients

Abstract

Aims

Vertical fine-root distribution determines the potential for acquisition of resources throughout soil profiles; yet, variation among forest types and changes in vertical distribution with environments are poorly understood. We examined vertical root distributions of different forest communities to determine how belowground strategies shift across different forest types and along edaphic gradients.

Methods

Specific root length and diameter of fine roots as well as fine-root biomass, length and area densities were measured in sequential soil layers at 10 cm depth increments across 118 forest plots representing five subalpine forest types.

Results

Evergreen forest types, including evergreen oaks, were more deeply rooted than birch forests. Differences in rooting depth were due to the dominant tree species identity, not to variations in shrub or herbaceous components. Within forest types, soil nutrients and physical properties contributed to shifts rooting depth but not root morphology.

Conclusions

Vertical distributions of fine roots represent critical inputs of plant carbon into soils as well as different capacities for the acquisition of soil resources. Our findings identify consistent patterns of rooting distributions among forest types that may be predictable based on more easily measured root and soil properties and can improve efforts to model rooting depth profiles in forest communities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

FRMD:

Fine-root mass density (kg m−3)

Pro20:

The proportion of fine-root biomass in 20 cm soil depth (%)

β-value:

Index of rooting distribution

MAT:

Annual mean temperature (°C)

MAP:

Mean annual precipitation (mm)

Tc:

Tree canopy closure (%)

STM:

Shrub total mass (g m−2)

HTM:

Herb total mass (g m−2)

STN0–20 :

Soil nitrogen concentration in 0–20 cm soil layer (g kg−1)

SBD0–20 :

Soil bulk density in 0–20 cm soil layer (kg cm−3)

STN20–30 :

Soil nitrogen concentration in 20–30 cm soil layer

SBD20–30 :

Soil bulk density in 20–30 cm soil layer (kg cm−3)

STN30–50 :

Soil nitrogen concentration in 30–50 cm soil layer

SBD30–50 :

Soil bulk density in 30–50 cm soil layer (kg cm−3)

References

  1. Alameda D, Villar R (2012) Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. Seedlings under soil compaction conditions. Environ Exp Bot 79:49–57. https://doi.org/10.1016/j.envexpbot.2012.01.004

    Article  Google Scholar 

  2. Arndal MF, Tolver A, Larsen KS, Beier C, Schmidt IK (2018) Fine root growth and vertical distribution in response to elevated CO2, warming and drought in a mixed heathland–grassland. Ecosystems 21:15–30. https://doi.org/10.1007/s10021-017-0131-2

    CAS  Article  Google Scholar 

  3. Brassard BW, Chen HYH, Bergeron Y (2009) Influence of environmental variability on root dynamics in northern forests. Crit Rev Plant Sci 28(3):179–197. https://doi.org/10.1080/07352680902776572

    Article  Google Scholar 

  4. Brassard BW, Chen HYH, Bergeron Y, Pare D (2011) Differences in fine root productivity between mixed- and single-species stands. Funct Ecol 25:238–246. https://doi.org/10.1111/j.1365-2435.2010.01769.x

    Article  Google Scholar 

  5. Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Børja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konôpka B, López BC, Miguel Pérez C, Persson H, Ostonen I (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372. https://doi.org/10.1007/s11104-012-1313-5

    CAS  Article  Google Scholar 

  6. Clark LJ, Whalley WR, Barraclough PB (2003) How do roots penetrate strong soil? Plant Soil 255:93–104. https://doi.org/10.1093/jxb/ert286

    CAS  Article  Google Scholar 

  7. Ding J, Kong D, Zhang Z, Cai Q, Xiao J, Liu Q, Yin H (2020) Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests. J Ecol. https://doi.org/10.1111/1365-2745.13407

  8. Estrada-Medina H, Graham RC, Allen MF, Jiménez-Osornio JJ, Robles-Casolco S (2013) The importance of limestone bedrock and dissolution karst features on tree root distribution in northern Yucatán. México Plant Soil 362:37–50. https://doi.org/10.1007/s11104-012-1175-x

    CAS  Article  Google Scholar 

  9. Fan Y, Miguez-Macho G, Jobbágy EG, Jackson RB, Otero-Casal C (2017) Hydrologic regulation of plant rooting depth. Natl Acad Sci USA (PNAS) 114(40):10572–10577. https://doi.org/10.1073/pnas.1712381114

    CAS  Article  Google Scholar 

  10. Feng DF, Bao WK, Pang XY (2017) Consistent profile pattern and spatial variation of soil C/N/P stoichiometric ratios in the subalpine forests. J Soils Sediments 17:2054–2065. https://doi.org/10.1007/s11368-017-1665-9

    CAS  Article  Google Scholar 

  11. Finér L, Ohashi M, Noguchi K, Hirano Y (2011) Factors causing variation in fine root biomass in forest ecosystems. For Ecol Manag 261:265–277. https://doi.org/10.1016/j.foreco.2010.10.016

    Article  Google Scholar 

  12. Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM, Bonis A, Comas LH, Cornelissen JHC, Dong M, Guo D, Hobbie SE, Holdaway RJ, Kembel SW, Makita N, Onipchenko VG, Picon-Cochard C, Reich PB, de la Riva EG, Smith SW, Soudzilovskaia NA, Tjoelker MG, Wardle DA, Roumet C (2017) Climate, soil and plant functional types as drivers of global fine-root trait variation. J Ecol 105:1182–1196. https://doi.org/10.1111/1365-2745.12769

    Article  Google Scholar 

  13. Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F (2018) Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress. New Phytol 219(4):1338–1352. https://doi.org/10.1111/nph.15225

    PubMed  Article  Google Scholar 

  14. Gale MR, Grigal DF (1987) Vertical root distributions of northern tree species in relation to successional status. Can J For Res 17:829–834. https://doi.org/10.1139/x87-131

    Article  Google Scholar 

  15. Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  16. Herben T, Vozábová T, Hadincová V, Krahulec F, Mayerová H, Pecháčková S, Skálová H, Krak K (2018) Vertical root distribution of individual species in a mountain grassland community: does it respond to neighbours? J Ecol 106:1083–1095. https://doi.org/10.1111/1365-2745.12830

  17. Hobbie EA, Colpaert JV (2003) Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytol 157:115–126. https://doi.org/10.1111/j.1469-8137.2004.01187.x

    CAS  Article  Google Scholar 

  18. Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Comes DA (2011) Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963. https://doi.org/10.1111/j.1365-2745.2011.01821.x

    Article  Google Scholar 

  19. Hu H, Bao WK, Li FL (2020) Differential vertical distribution of functional traits of fine roots of four cultivated tree species in the upper reaches of Minjiang River. Chin J Ecol https://doi.org/10.13292/j.1000-4890.202001.013

  20. Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol 186:346–357. https://doi.org/10.1111/j.1469-8137.2009.03122.x

    PubMed  Article  Google Scholar 

  21. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. https://doi.org/10.2307/4221432

    CAS  PubMed  Article  Google Scholar 

  22. Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366. https://doi.org/10.1073/pnas.94.14.7362

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Jacob A, Hertel D, Leuschner C (2014) Diversity and species identity effects on fine root productivity and turnover in a species-rich temperate broad-leaved forest. Funct Plant Biol 41:678–689. https://doi.org/10.1071/FP13195

    PubMed  Article  Google Scholar 

  24. Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:51–77. https://doi.org/10.1023/A:1010760720215

    Article  Google Scholar 

  25. Li FL, Hu H, McCormlack ML, Feng DF, Liu X, Bao WK (2019) Community-level economics spectrum of fine-roots driven by nutrient limitations in subalpine forests. J Ecol 107:1238–1249. https://doi.org/10.1111/1365-2745.13125

    Article  Google Scholar 

  26. López B, Sabatés S, Gracia CA (2001) Vertical distribution of fine root density, length density, area index and mean diameter in a Quercus ilex forest. Tree Physiol 21: 555–560. 10.1093/treephys/21.8.555

  27. Luo YQ, Zhao XY, Ding JP, Wang T (2016) Vertical distribution of Artemisia halodendron root system in relation to soil properties in Horqin Sandy land, NE China. Sci Cold Arid Reg 8(5):0411–0418. https://doi.org/10.3724/SP.J.1226.2016.00411

    Article  Google Scholar 

  28. Lynch JP (2019) Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. New Phytol 223:548–564. https://doi.org/10.1111/nph.15738

    PubMed  Article  Google Scholar 

  29. Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2011) Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecol Res 26:95–104. https://doi.org/10.1007/s11284-010-0764-5

    Article  Google Scholar 

  30. Ochoa-Hueso R, Piňeiro J, Power SA (2020) Spatial distribution of fine root biomass in a remnant Eucalyptus tereticornis woodland in eastern Australia. Plant Ecol 221:55–62. https://doi.org/10.1007/s11258-019-00990-5

    Article  Google Scholar 

  31. Ojeda JJ, Caviglia OP, Agnusdei MG (2018) Vertical distribution of root biomass and soil carbon stocks in forage cropping systems. Plant Soil 423:175–191. https://doi.org/10.1007/s11104-017-3502-8

    CAS  Article  Google Scholar 

  32. Orwin KH, Kirschbaum MUF, St John MG, Dickie IA (2011) Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14:493–502. https://doi.org/10.1111/j.1461-0248.2011.01611.x

    PubMed  Article  Google Scholar 

  33. Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, Kabral N, Kukumägi M, Leppälammi-Kujansuu J, Lindroos AJ, Merilä P, Napa Ü, Nöjd P, Parts K, Uri V, Varik M, Truu J (2017) Adaptive root foraging strategies along a boreal–temperate forest gradient. New Phytol 215:977–991. https://doi.org/10.1111/nph.14643

    CAS  PubMed  Article  Google Scholar 

  34. Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012) Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327. https://doi.org/10.1111/1365-2745.12351

    Article  Google Scholar 

  35. Püttsepp Ü, Lõhmus K, Persson HA, Ahlström K (2006) Fine-root distribution and morphology in an acidic Norway spruce (Piceaabies (L.) karst.) stand in SW Sweden in relation to granulated wood ash application. For Ecol Manag 221:291–298. https://doi.org/10.1016/j.foreco.2005.10.012

    Article  Google Scholar 

  36. Ryser P (2006) The mysterious root length. Plant Soil 286: 1–6. https://doi.org/10.1007/s11104-006-9096-1

  37. Sandel B, Goldstein LJ, Kraft NJ, Okie JG, Shuldman MI, Ackerly DD, Cleland EE, Suding KN (2010) Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. New Phytol 188:565–575. https://doi.org/10.1111/j.1469-8137.2010.03382.x

    PubMed  Article  Google Scholar 

  38. Schenk HJ, Jackson RB (2002a) Rooting depths, lateral root spreads, and belowground/aboveground allometries of plants in water-limited ecosystems. J Ecol 90:480–494. https://doi.org/10.1006/jipa.1996.0069

    Article  Google Scholar 

  39. Schenk HJ, Jackson RB (2002b) The global biogeography of roots. Ecol Monogr 72:311–328. https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0CO.2

    Article  Google Scholar 

  40. Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220. https://doi.org/10.1111/j.1365-2435.2007.01370.x

    Article  Google Scholar 

  41. Smithwick EAH, Lucash MS, McCormack ML, Sivandran G (2014) Improving the representation of roots in terrestrial models. Ecol Model 291:193–204. https://doi.org/10.1016/j.ecolmodel.2014.07.023

    CAS  Article  Google Scholar 

  42. Valverde-Barrantes OJ, Raich JW, Russell AE (2007) Fine-root mass, growth and nitrogen content for six tropical tree species. Plant Soil 290:357–370. https://doi.org/10.1007/s11104-006-9168-2

    CAS  Article  Google Scholar 

  43. Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB (2017) A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytol 215:1562–1573. https://doi.org/10.1111/nph.14571

    PubMed  Article  Google Scholar 

  44. Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    CAS  Article  Google Scholar 

  45. Wang P, Mommer L, Ruijven JV, Berendse F, Maximov TC, Heijmans MMPD (2016) Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site. Plant Soil 407:55–65. https://doi.org/10.1007/s11104-016-2858-5

    CAS  Article  Google Scholar 

  46. Wang Z, Yu K, Lv S, Niklas KJ, Mipam TD, Crowther TW, Umaña MN, Zhao Q, Huang H, Reich PB (2019) The scaling of fine root nitrogen versus phosphorus in terrestrial plants: a global synthesis. Funct Ecol 33:2081–2094. https://doi.org/10.1111/1365-2435.13434

    Article  Google Scholar 

  47. Warren JM, Hanson PJ, Iversen CM, Kumar J, Walker AP, Wullschleger SD (2015) Root structural and functional dynamics in terrestrial biosphere models–evaluation and recommendations. New Phytol 205:59–78. https://doi.org/10.1111/nph.13034

    PubMed  Article  Google Scholar 

  48. Yuan ZY, Chen HYH (2010) Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses. Crit Rev Plant Sci 29:204–221. https://doi.org/10.1080/07352689.2010.483579

    CAS  Article  Google Scholar 

  49. Zhang Z, Li N, Xiao J, Zhao C, Zou T, Li D, Liu Q, Yin H (2018) Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan plateau, China. Soil Biol Biochem 119:50–58. https://doi.org/10.1016/j.soilbio.2018.01.002

    CAS  Article  Google Scholar 

  50. Zhang BW, Cadotte MW, Chen SP, Tan X, You C, Ren T, Chen M, Wang S, Li W, Chu C, Jiang L, Bai Y, Huang J, Han X (2019) Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 100(11):e02828. https://doi.org/10.1002/ecy.2828

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Second Tibetan Plateau Scientific Expedition and.

Research program (STEP) (2019QZKK0301), the National Science and Technology Major Project of Sichuan Province (2018SZDZX0035), the National Key R & D Program of China (No. 2017YFC0505105), the National Natural Science Foundation of China (No. 31470478 and No. 31470023).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fang Lan Li or Wei Kai Bao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Andrea Schnepf

Electronic supplementary material

ESM 1

(DOCX 2194 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F.L., McCormack, M.L., Liu, X. et al. Vertical fine-root distributions in five subalpine forest types shifts with soil properties across environmental gradients. Plant Soil (2020). https://doi.org/10.1007/s11104-020-04706-x

Download citation

Keywords

  • Community structure
  • Geographical location
  • Forest ecosystems
  • Rooting depth
  • Soil properties