Skip to main content

Advertisement

Log in

Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Licorice (Glycyrrhiza uralensis Fisch.) is a crucial medicinal herb as it accumulates glycyrrhizin and liquiritin in roots. Licorice root-associated bacterial communities shaped by soil characteristics are supposed to regulate the accumulation of root secondary metabolites.

Methods

The soil characteristics, root secondary metabolites, and root-associated bacterial communities were analyzed in licorice plants of different ages to explore their temporal dynamics and interaction mechanisms.

Results

Temporal variation in soil characteristics and root secondary metabolites was distinct. The alpha-diversity of root-associated bacterial communities decreased with root proximity, and the community composition was clustered in the rhizosphere. Different taxa that were core-enriched from the dominant taxa in the bulk soil, rhizosphere soil, and root endosphere displayed varied time–decay relationships. Soil total potassium (TK) as a key factor regulated the temporal variation in some individual taxa in the bulk and rhizosphere soils; these taxa were associated with the adjustment of root secondary metabolites across different TK levels.

Conclusions

Licorice specifically selects root-associated core bacteria over the course of plant development, and TK is correlated with root secondary metabolites and individual core-enriched taxa in the bulk and rhizosphere soils, which may have implications for practical licorice cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 57:289–300

    Google Scholar 

  • Bibby TS, Nield J, Partensky F, Barber J (2001) Antenna ring around photosystem I. Nature 413:590

    CAS  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    CAS  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinf 12:35

    Google Scholar 

  • Chen L, Brookes PC, Xu J, Zhang J, Zhang C, Zhou X, Luo Y (2016) Structural and functional differentiation of the root-associated bacterial microbiomes of perennial ryegrass. Soil Biol Biochem 98:1–10

    CAS  Google Scholar 

  • Chen M, Yang G, Sheng Y, Li P, Qiu H, Zhou X, Huang L, Chao Z (2017) Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Front Plant Sci 8:931

    PubMed  PubMed Central  Google Scholar 

  • Chun Hwi C, Jung-Sook L, Dong-Shan A, Tae Woong W, Song-Gun K (2012) Nocardioides panacisoli sp. nov., isolated from the soil of a ginseng field. Int J Syst Evol Microbiol 60:591–595

    Google Scholar 

  • Cinatl J, Morgenstern B, Bauer G, Chandra PP, Rabenau H, Doerr HW (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 361:2045–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coats VC, Pelletreau KN, Rumpho ME (2014) Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergii DC.). Mol Ecol 23:1318–1332

    CAS  PubMed  Google Scholar 

  • Conesa A, Nueda MJ, Ferrer A, Talon M (2006) MaSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22:1096–1102

    CAS  PubMed  Google Scholar 

  • De Mendiburu F (2014) Agricolae: statistical procedures for agricultural research. R package version 1:1–3

    Google Scholar 

  • Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science 359:320–325

    CAS  PubMed  Google Scholar 

  • Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E, Garrido-Oter R, Wunder J, Coupland G, Schulze-Lefert P (2017) Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11:43–55

    CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards J et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A 112:911–920

    Google Scholar 

  • Egamberdieva D, Li L, Lindström K, Räsänen LA (2016) A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis fish.) under salt stress. Appl Microbiol Biotechnol 100:2829–2841

    CAS  PubMed  Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:185–268

    CAS  Google Scholar 

  • Fan K, Weisenhorn P, Gilbert JA, Shi Y, Bai Y, Chu H (2018) Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol Biochem 121:185–192

    CAS  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez Rubio V. (2017) Book review: ggplot2 – elegant graphics for data analysis (2nd edition). J Statist Soft 77 (Book review 2)

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Statist Soft 22:1–19

    Google Scholar 

  • Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30:2811–2812

    CAS  PubMed  Google Scholar 

  • Hae-Min J, Jung-Sook L, Heon-Meen B, Tae-Hoo Y, Se-Young K, Sung-Taik L, Wan-Taek I (2011) Inquilinus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 61:201

    Google Scholar 

  • Hamilton N (2015) An extension to 'ggplot2', for the creation of ternary diagrams [r package ggtern version 2.2.1]. Anesthesiology 64:72–86

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Hayashi H, Sudo H (2009) Economic importance of licorice. Plant Biotechnol 26:101–104

    CAS  Google Scholar 

  • Hosseinzadeh H, Nassiri-Asl M (2016) Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review. Phytother Res 29:1868–1886

    Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Multcomp: simultaneous inference in general parametric models. Biom J 50:346–363

    PubMed  Google Scholar 

  • Huang W, Long C, Lam E (2018) Roles of plant-associated microbiota in traditional herbal medicine. Trends Plant Sci 23:559–562

    CAS  PubMed  Google Scholar 

  • Jan S, Mir JI, Singh DB, Faktoo SZ, Sharma A, Alyemeni MN, Ahmad P (2018) Effect of environmental variables on phytonutrients of Origanum vulgare L. in the sub-humid region of the northwestern Himalayas. Environ Monit Assess 190:571

    PubMed  Google Scholar 

  • Jiao S, Xu Y, Zhang J, Hao X, Lu Y (2019) Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems 4:e00313–e00318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G (2017) Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol 26:923–936

    CAS  PubMed  Google Scholar 

  • Kaewkla O, Franco CMM (2017) Promicromonospora callitridis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 67:3559–3563

    CAS  PubMed  Google Scholar 

  • Koberl M, Schmidt R, Ramadan EM, Bauer R, Berg G (2013) The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front Microb 4:400

    Google Scholar 

  • Kolde R (2015) Pheatmap: pretty heatmaps. R package version 061

  • Kirchhof G, Reis VM, Baldani JI, Eckert B, Döbereiner J, Hartmann A (1997) Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194:45–55

    CAS  Google Scholar 

  • Kudoyarova G, Arkhipova T, Korshunova T, Bakaeva M, Loginov O, Dodd IC (2019) Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front Plant Sci 10:1368

    PubMed  PubMed Central  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Statist Soft 25:1–18

    Google Scholar 

  • Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N (2013) Temporal variability in soil microbial communities across land-use types. ISME J 7:1641–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis GSB, Mackinder B, Lock M (2005) Legume publications of the royal botanic gardens, Kew, London. Curtiss Bot Mag 14:245–257

    Google Scholar 

  • Li WD, Hou JL, Wang WQ, Tang XM, Liu CL, Xing D (2011) Effect of water deficit on biomass production and accumulation of secondary metabolites in roots of Glycyrrhiza uralensis. Russ J Plant Physiol 58:538–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen X, Liu J, Liu T, Cheng J, Wei G, Lin Y (2019) Temporal and spatial succession and dynamics of soil fungal communities in restored grassland on the loess plateau in China. Land Degrad Dev 30:1273–1287

    Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    CAS  PubMed  Google Scholar 

  • Lucas M, Balbín-Suárez A, Smalla K, Vetterlein D, Martinez-Abarca F (2018) Root growth, function and rhizosphere microbiome analyses show local rather than systemic effects in apple plant response to replant disease soil. PLoS One 13:e0204922

    PubMed  PubMed Central  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:125

    Google Scholar 

  • Mehrotra M, Duose DY, Singh RR, Barkoh BA, Manekia J, Harmon MA, Patel KP, Routbort MJ, Medeiros LJ, Wistuba II, Luthra R (2017) Versatile ion S5XL sequencer for targeted next generation sequencing of solid tumors in a clinical laboratory. PLoS One 12:e0181968

    PubMed  PubMed Central  Google Scholar 

  • Nekola JC, White PS (1999) Special paper: the distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878

    Google Scholar 

  • Nikolayeva O, Robinson MD (2014) EdgeR for differential RNA-seq and ChIP-seq analysis: an application to stem cell biology. Methods Mol Biol 1150:45–79

    CAS  PubMed  Google Scholar 

  • Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, De VP, Brodie EL, Firestone MK (2016) Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97:1307–1318

    PubMed  Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) Vegan: community ecology package. R Package version 2:0–4

    Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, Ravin NV, Bonch-Osmolovskaya EA, Kublanov IV (2013) Characterization of Melioribacter roseus gen. Nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol 15:1759–1771

    CAS  PubMed  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104

    CAS  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, Ver LTE, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 111:585–592

    CAS  PubMed  Google Scholar 

  • Shade A, Caporaso JG, Handelsman J, Knight R, Fierer N (2013) A meta-analysis of changes in bacterial and archaeal communities with time. ISME J 7:1493–1506

    PubMed  PubMed Central  Google Scholar 

  • Shakya M, Gottel N, Castro H, Yang ZK, Gunter L, Labbé J, Muchero W, Bonito G, Vilgalys R, Tuskan G, Podar M, Schadt CW (2013) A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLoS One 8:e76382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thaweenut N, Hachisuka Y, Ando S, Yanagisawa S, Yoneyama T (2011) Two seasons’ study on nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant Soil 338:435–449

    CAS  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Van AL, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    PubMed  Google Scholar 

  • Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wu WH (2017) Regulation of potassium transport and signaling in plants. Curr Opin Plant Biol 39:123–128

    CAS  PubMed  Google Scholar 

  • Wei T, Simko V (2013) Corrplot: visualization of a correlation matrix. MMWR 52:145–151

    Google Scholar 

  • Wu L, Chen J, Xiao Z, Zhu X, Wang J, Wu H, Wu Y, Zhang Z, Lin W (2018) Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture. Int J Mol Sci 19:850

    PubMed Central  Google Scholar 

  • Xiao X, Chen W, Zong L, Yang J, Jiao S, Lin Y, Wang E, Wei G (2017) Two cultivated legume plants reveal the enrichment process of the microbiome in the rhizocompartments. Mol Ecol 26:1641–1651

    CAS  PubMed  Google Scholar 

  • Xie W et al (2018) Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28:1–16

    Google Scholar 

  • Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J, Deng X, Ancona V, Lu Z, Zhong B, Roper MC, Capote N, Catara V, Pietersen G, Vernière C, al-Sadi AM, Li L, Yang F, Xu X, Wang J, Yang H, Jin T, Wang N (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:4894

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G, Yuan L, Garrido-Oter R, Chu C, Bai Y (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684

    CAS  PubMed  Google Scholar 

  • Zhang J et al (2018) Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci 61:3–11

    Google Scholar 

  • Zhang Q, Ye M (2009) Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A 1216:1954–1969

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Xiaowu Yan and Ming Li for assistance in soil sampling. We also thank the anonymous reviewers for comments on the manuscript. This work was funded by the National Natural Science Foundation of China (No. 41830755 and 41807030).

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Shuo Jiao or Gehong Wei.

Ethics declarations

All authors read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Anna Maria Pirttila

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2201 kb)

ESM 2

(CSV 4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Y., Luo, W. et al. Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages. Plant Soil 456, 61–79 (2020). https://doi.org/10.1007/s11104-020-04692-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04692-0

Keywords