Skip to main content

Advertisement

Log in

New soil carbon sequestration with nitrogen enrichment: a meta-analysis

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Through agriculture and industry, humans are increasing the deposition and availability of nitrogen (N) in ecosystems worldwide. Carbon (C) isotope tracers provide useful insights into soil C dynamics, as they allow to study soil C pools of different ages. We evaluated to what extent N enrichment affects soil C dynamics in experiments that applied C isotope tracers.

Methods

Using meta-analysis, we synthesized data from 35 published papers. We made a distinction between “new C” and “old C” stocks, i.e., soil C derived from plant C input since the start of the isotopic enrichment, or unlabeled, pre-existing soil C.

Results

Averaged across studies, N addition increased new soil C stocks (+30.3%), total soil C stocks (+6.1%) and soil C input proxies (+30.7%). Although N addition had no overall, average, effect on old soil C stocks and old soil C respiration, old soil C stocks increased with the amount of N added and respiration of old soil C declined. Nitrogen-induced effects on new soil C and soil C input both decreased with the amount of extraneous N added in control treatments.

Conclusion

Although our findings require additional confirmation from long-term field experiments, our analysis provides isotopic evidence that N addition stimulates soil C storage both by increasing soil C input and (at high N rates) by decreasing decomposition of old soil C. Furthermore, we demonstrate that the widely reported saturating response of plant growth to N enrichment also applies to new soil C storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience 48(11):921–934

    Google Scholar 

  • Allison SD, Gartner TB, Mack MC, McGuire K, Treseder K (2010) Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biol Biochem 42:1157–1164

    CAS  Google Scholar 

  • Allmaras RR, Linden DR, Clapp CE (2004) Corn-residue transformations into root and soil carbon as related to nitrogen, tillage, and Stover management. Soil Sci Soc Am J 68:1366–1375

    CAS  Google Scholar 

  • Bai Y, Wu J, Clark CM et al (2010) Trade-offs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia grasslands. Glob Chang Biol 16:358–372

    Google Scholar 

  • Balesdent J, Mariotti A, Guillet B (1987) Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol Biochem 19:25–30

    CAS  Google Scholar 

  • Bicharanloo B, Shirvan MB, Keitel C, Dijkstra FA (2019) Nitrogen and phosphorus availability affect wheat carbon allocation pathways: rhizodeposition and mycorrhizal symbiosis. Soil Research

  • Billes G, Rouhier H, Bottner P (1993) Modifications of the carbon and nitrogen allocations in the plant (Triticum aestivum L.) soil system in response to increased atmospheric CO2 concentration. Plant Soil 157:215–225

    CAS  Google Scholar 

  • Bouwman L, Goldewijk KK, Van Der Hoek KW et al (2013) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci U S A 110(52):20882–20887

    CAS  PubMed  Google Scholar 

  • Bowman WD, Cleveland CC, Halada Ĺ, Hreško J, Baron JS (2008) Negative impact of nitrogen deposition on soil buffering capacity. Nat Geosci 1:767–770

    CAS  Google Scholar 

  • Bushby HVA, Vallis I, Myers RJK (1992) Dynamics of C in a pasture grass (Panicum maximum var. Trichoglume)—soil system. Soil Biol Biochem 24:381–387

    Google Scholar 

  • Butterly CR, Armstrong R, Chen D, Tang C (2015) Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant Soil 391:367–382

    CAS  Google Scholar 

  • Čapek P, Manzoni S, Kaštovská E, Wild B, Diáková K, Bárta J, Schnecker J, Biasi C, Martikainen PJ, Alves RJE, Guggenberger G, Gentsch N, Hugelius G, Palmtag J, Mikutta R, Shibistova O, Urich T, Schleper C, Richter A, Šantrůčková H (2018) A plant–microbe interaction framework explaining nutrient effects on primary production. Nat Ecol Evol 2:1588–1596

    PubMed  Google Scholar 

  • Cardon ZG, Hungate BA, Cambardella CA, Chapin FS III, Field CB, Holland EA, Mooney HA (2001) Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biol Biochem 33:365–373

    CAS  Google Scholar 

  • Carrillo Y, Dijkstra FA, Pendall E, LeCain D, Tucker C (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117:229–240

    CAS  Google Scholar 

  • Chen H, Li D, Gurmesa GA, Yu G, Li L, Zhang W, Fang H, Mo J (2015) Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: a meta-analysis. Environ Pollut 206:352–360

    CAS  PubMed  Google Scholar 

  • Chen J, Luo Y, van Groenigen KJ et al (2018) A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci Adv 4:eaaq1689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    CAS  Google Scholar 

  • Cheng W (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

  • Cotrufo MF, Gorissen A (1997) Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytol 137:421–431

    CAS  Google Scholar 

  • Crowther TW, Riggs C, Lind EM, Borer ET, Seabloom EW, Hobbie SE, Wubs J, Adler PB, Firn J, Gherardi L, Hagenah N, Hofmockel KS, Knops JMH, McCulley RL, MacDougall AS, Peri PL, Prober SM, Stevens CJ, Routh D (2019) Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecol Lett 22(6):936–945

    CAS  PubMed  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, McDowell WH (2011) Effects of nitrogen additions on above-and belowground carbon dynamics in two tropical forests. Biogeochemistry 104:203–225

    CAS  Google Scholar 

  • De Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    PubMed  Google Scholar 

  • Deng Q, Hui D, Dennis S, Reddy KC (2017) Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Glob Ecol Biogeogr 26:713–728

    Google Scholar 

  • Dijkstra FA, Hobbie SE, Knops JM, Reich PB (2004) Nitrogen deposition and plant species interact to influence soil carbon stabilization. Ecol Lett 7:1192–1198

    Google Scholar 

  • Dijkstra FA, Carrillo Y, Pendall E, Morgan JA (2013) Rhizosphere priming: a nutrient perspective. Front Microbiol 4:216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    PubMed  Google Scholar 

  • Eswaran H, Van Den Berg E, Reich P (1993) Organic carbon in soils of the world. Soil Sci Soc Am J 57:192–194

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Biol 40:503–537

    CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Google Scholar 

  • Frey SD, Ollinger S, Nadelhoffer K, Bowden R, Brzostek E, Burton A, Caldwell BA, Crow S, Goodale CL, Grandy AS, Finzi A, Kramer MG, Lajtha K, LeMoine J, Martin M, McDowell WH, Minocha R, Sadowsky JJ, Templer PH, Wickings K (2014) Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry 121:305–316

    CAS  Google Scholar 

  • Ge T, Liu C, Yuan H, Zhao Z, Wu X, Zhu Z, Brookes P, Wu J (2015) Tracking the photosynthesized carbon input into soil organic carbon pools in a rice soil fertilized with nitrogen. Plant Soil 392:17–25

    CAS  Google Scholar 

  • Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones DL, Wu J, Kuzyakov Y (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48

    CAS  Google Scholar 

  • Gong W, Yan X, Wang J (2012) The effect of chemical fertilizer on soil organic carbon renewal and CO2 emission—a pot experiment with maize. Plant Soil 353:85–94

    CAS  Google Scholar 

  • Hagedorn F, Spinnler D, Siegwolf R (2003) Increased N deposition retards mineralization of old soil organic matter. Soil Biol Biochem 35:1683–1692

    CAS  Google Scholar 

  • Haile-Mariam S, Cheng W, Johnson DW, Ball JT, Paul EA (2000) Use of carbon-13 and carbon-14 to measure the effects of carbon dioxide and nitrogen fertilization on carbon dynamics in ponderosa pine. Soil Sci Soc Am J 64:1984–1993

    CAS  Google Scholar 

  • Heath J, Ayres E, Possell M, Bardgett RD, Black HI, Grant H, Ineson P, Kerstiens G (2005) Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. Science 309:1711–1713

    CAS  PubMed  Google Scholar 

  • Hebeisen T, Lüscher A, Zanetti S et al (1997) Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob Chang Biol 3(2):149–160

    Google Scholar 

  • Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental ecology. Ecology 80:1150–1156

    Google Scholar 

  • Hofmann A, Heim A, Gioacchini P, Miltner A, Gehre M, Schmidt MWI (2009) Mineral fertilization did not affect decay of old lignin and SOC in a 13C-labeled arable soil over 36 years. Biogeosciences 6:1139–1148

    CAS  Google Scholar 

  • Hungate BA, Jackson RB, Field CB, Chapin FS III (1995) Detecting changes in soil carbon in CO2 enrichment experiments. Plant Soil 187:135–145

    Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS III, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    CAS  Google Scholar 

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Chang 80:5–23

    CAS  Google Scholar 

  • Kazanski C (2017) Soil carbon cycling responses to elevated CO2 and nitrogen addition. Doctoral dissertation, University of Minnesota, Minneapolis, United States

  • Keith H, Oades JM, Martin JK (1986) Input of carbon to soil from wheat plants. Soil Biol Biochem 18:445–449

    CAS  Google Scholar 

  • Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat Med 22:2693–2710

    PubMed  Google Scholar 

  • Kristensen HL, McCarty GW, Meisinger JJ (2000) Effects of soil structure disturbance on mineralization of organic soil nitrogen. Soil Sci Soc Am J 64(1):371–378

    CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. Review J Plant Nutr Soil Sci 163:421–431

    CAS  Google Scholar 

  • Lamarque JF, Dentener F, McConnell J, Ro CU, Shaw M, Vet R, Bergmann D, Cameron-Smith P, Dalsoren S, Doherty R, Faluvegi G (2013) Multi-model mean nitrogen and sulfur deposition from the atmospheric chemistry and climate model intercomparison project (ACCMIP): evaluation of historical and projected future. Atmos Chem Phys 13(LLNL-JRNL-644459):7997–8018

    Google Scholar 

  • Langley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP (2009) Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO2. Soil Biol Biochem 41:54–60

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    PubMed  Google Scholar 

  • Liljeroth E, Van Veen JA, Miller HJ (1990) Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol Biochem 22:1015–1021

    CAS  Google Scholar 

  • Liljeroth E, Kuikman P, Van Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence on the turnover of native soil organic matter at different soil nitrogen levels. Plant Soil 161:233–240

    Google Scholar 

  • Liu K, Sollenberger LE, Silveira ML, Vendramini J, Newman YC (2017) Nutrient pools in bermudagrass swards fertilized at different nitrogen levels. Crop Sci 57:525–533

    CAS  Google Scholar 

  • Loisel J, Connors JPC, Hugelius G, Harden JW, Morgan CL (2019) Soils can help mitigate CO2 emissions, despite the challenges. Proc Natl Acad Sci 116:10211–10212

    CAS  PubMed  Google Scholar 

  • Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, Li B (2011) Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agric Ecosyst Environ 140(1–2):234–244

    CAS  Google Scholar 

  • Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ (2015) Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang Biol 21:3169–3180

    PubMed  Google Scholar 

  • Maaroufi NI, Nordin A, Palmqvist K, Hasselquist NJ, Forsmark B, Rosenstock NP, Wallander H, Gundale MJ (2019) Anthropogenic nitrogen enrichment enhances soil carbon accumulation by impacting saprotrophs rather than ectomycorrhizal fungal activity. Glob Chang Biol 25:2900–2914

    PubMed  Google Scholar 

  • Mack MC, Schuur EA, Bret-Harte MS, Shaver GR, Chapin FS III (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443

    CAS  PubMed  Google Scholar 

  • Minasny B, Malone BP, McBratney AB et al (2017) Soil carbon 4 per mille. Geoderma 292:59–86

    Google Scholar 

  • Nottingham AT, Turner BL, Stott AW, Tanner EV (2015) Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol Biochem 80:26–33

    CAS  Google Scholar 

  • Ogle K, Pendall E (2015) Isotope partitioning of soil respiration: a Bayesian solution to accommodate multiple sources of variability. J Geophys Res Biogeosci 120:221–236

    CAS  Google Scholar 

  • Osenberg CW, Sarnelle O, Cooper SD, Holt RD (1999) Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80:1105–1117

    Google Scholar 

  • Paterson E, Thornton B, Midwood AJ, Osborne SM, Sim A, Millard P (2008) Atmospheric CO2 enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter, but do not alter microbial utilisation of plant- and soil C-sources. Soil Biol Biochem 40:2434–2440

    CAS  Google Scholar 

  • Penuelas J, Poulter B, Sardans J et al (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934

    PubMed  Google Scholar 

  • Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049

    PubMed  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob Chang Biol 14:142–153

    Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    CAS  Google Scholar 

  • Rochette P, Flanagan LB, Gregorich EG (1999) Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci Soc Am J 63:1207–1213

    CAS  Google Scholar 

  • Silveira ML, Liu K, Sollenberger LE, Follett RF, Vendramini JM (2013) Short-term effects of grazing intensity and nitrogen fertilization on soil organic carbon pools under perennial grass pastures in the southeastern USA. Soil Biol Biochem 58:42–49

    CAS  Google Scholar 

  • Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93:345–354

    PubMed  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    CAS  PubMed  Google Scholar 

  • Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC (2018) Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol 217:507–522

    CAS  PubMed  Google Scholar 

  • Terrer C, Jackson RB, Prentice IC, Keenan TF, Kaiser C, Vicca S, Fisher JB, Reich PB, Stocker BD, Hungate BA, Peñuelas J, McCallum I, Soudzilovskaia NA, Cernusak LA, Talhelm AF, van Sundert K, Piao S, Newton PCD, Hovenden MJ, Blumenthal DM, Liu YY, Müller C, Winter K, Field CB, Viechtbauer W, van Lissa CJ, Hoosbeek MR, Watanabe M, Koike T, Leshyk VO, Polley HW, Franklin O (2019) Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Clim Chang 9:684–689

    CAS  Google Scholar 

  • Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019

    Google Scholar 

  • Trumbore SE (1997) Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci U S A 94:8284–8291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Krift TA, Kuikman PJ, Möller F, Berendse F (2001) Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant Soil 228:191–200

    Google Scholar 

  • Van Ginkel JH, Gorissen A, Van Veen JA (1997) Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamics. Plant Soil 188:299–308

    Google Scholar 

  • Van Groenigen KJ, Six J, Harris D, Blum H, van Kessel C (2003) Soil 13C-15N dynamics in an N2-fixing clover system under long-term exposure to elevated atmospheric CO2. Glob Chang Biol 9:1751–1762

    Google Scholar 

  • Van Groenigen KJ, Six J, Hungate BA, de Graaff MA, Van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci U S A 103:6571–6574

    PubMed  PubMed Central  Google Scholar 

  • Van Groenigen JW, Velthof GL, Oenema O, van Groenigen KJ, van Kessel C (2010) Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 61:903–913

    Google Scholar 

  • Van Groenigen KJ, Osenberg CW, Terrer C et al (2017) Faster turnover of new soil carbon inputs under increased atmospheric CO2. Glob Chang Biol 23:4420–4429

    PubMed  Google Scholar 

  • Van Kessel C, Horwath WR, Hartwig U, Harris D, Lüscher A (2000) Net soil carbon input under ambient and elevated CO2 concentrations: isotopic evidence after 4 years. Glob Chang Biol 6:435–444

    Google Scholar 

  • Ventura M, Panzacchi P, Muzzi E, Magnani F, Tonon G (2019) Carbon balance and soil carbon input in a poplar short rotation coppice plantation as affected by nitrogen and wood ash application. New For 50(6):969–990

    Google Scholar 

  • Viechtbauer W (2010) Metafor: meta-analysis package for R. R package version, 2010, 1-0

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15

    PubMed  Google Scholar 

  • Wilts AR, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects. Soil Sci Soc Am J 68:1342–1351

    CAS  Google Scholar 

  • Wright SJ (2019) Plant responses to nutrient addition experiments conducted in tropical forests. Ecol Monogr:1382

  • Xu Q, Wang X, Tang C (2018) The effects of elevated CO2 and nitrogen availability on rhizosphere priming of soil organic matter under wheat and white lupin. Plant Soil 425:375–387

    CAS  Google Scholar 

  • Yue K, Peng Y, Peng C, Yang W, Peng X, Wu F (2016) Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Sci Rep 6:19895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Yang X, Drury CF, Reynolds WD, He H, Zhang X (2012) Effects of 49 years of fertilization on the distribution and accumulation of soil carbon under corn cultivation. Can J Soil Sci 92:835–839

    Google Scholar 

  • Zhou Z, Wang C, Zheng M, Jiang L, Luo Y (2017) Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem 115:433–441

    CAS  Google Scholar 

  • Zhou J, Zang H, Loeppmann S, Gube M, Kuzyakov Y, Pausch J (2020) Arbuscular mycorrhiza enhances rhizodeposition and reduces the rhizosphere priming effect on the decomposition of soil organic matter. Soil Biol Biochem 140:107641

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank all authors of the studies in our dataset. Many thanks to Peter Reich for his comments on an earlier version of this manuscript. Many thanks to Shi Yafei for his helpful instructions on R coding. This work was supported by the National Key Research and Development Program of China (2017YFD0300104), the China Scholarship Council (CSC) (201706850042) and the US Department of Energy, Terrestrial Ecosystem Sciences grant DE SC0008270. C.T. was supported by a Lawrence Fellow award through Lawrence Livermore National Laboratory (LLNL). This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 20-ERD-055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees Jan van Groenigen.

Additional information

Responsible Editor: Zucong Cai.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 251 kb)

ESM 2

(XLSX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Terrer, C., Dijkstra, F.A. et al. New soil carbon sequestration with nitrogen enrichment: a meta-analysis. Plant Soil 454, 299–310 (2020). https://doi.org/10.1007/s11104-020-04617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04617-x

Keywords

Navigation