Skip to main content

Multiple scales of spatial heterogeneity control soil respiration responses to precipitation across a dryland rainfall gradient

Abstract

Aims

Soil respiration (Rs) is a major pathway for carbon release to the atmosphere. We explored variability in dryland Rs response to rainfall pulses at multiple levels of spatial heterogeneity: 1) along a hyper-arid to arid rainfall gradient, 2) across soil surfaces that differ in stability and composition, and 3) among different geomorphic and vegetation patch types.

Methods

We measured in situ Rs responses for 48 h following simulated rainfall pulses in the Namib Desert. Working across the rainfall gradient, we compared Rs responses on two soil surfaces. Each soil surface had two vegetation/geomorphic patch types that differed in organic matter sources and transport processes, with one characterized by depositional inputs and one characterized by erosional losses.

Results

Soil respiration was highly responsive to rainfall pulses, although soil surfaces and patch types often exerted more control on Rs than did rainfall pulses. Rainfall generally had proportionally greater influence on Rs with higher annual rainfall. Greater Rs occurred on stable than unstable soil surfaces and in depositional than erosional patch types.

Conclusions

Large differences in Rs among rainfall zones, soil surfaces, and patch types point to the need to carefully consider multiple scales of spatial heterogeneity when interpreting dryland biogeochemical fluxes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adachi M, Ito A, Yonemura S, Takeuchi W (2017) Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. J Environ Manag 200:97–104

    Google Scholar 

  • Ahlström A et al (2015) The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348:895–899

    PubMed  Google Scholar 

  • Austin AT (2011) Has water limited our imagination for aridland biogeochemistry? Trends Ecol Evol 26:229–235

    PubMed  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    PubMed  Google Scholar 

  • Bååth E, Wallander H (2003) Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system. Glob Chang Biol 9:1788–1791

    Google Scholar 

  • Barron-Gafford GA, Scott RL, Jenerette GD, Huxman TE (2011) The relative controls of temperature, soil moisture, and plant functional group on soil CO2 efflux at diel, seasonal, and annual scales. J Geophys Res 116:G01023

    Google Scholar 

  • Bartoń K (2009) MuMIn: multi-model inference. R package

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1:1–9

    Google Scholar 

  • Belnap J (2003) The world at your feet: desert biological soil crusts. Front Ecol Environ 1:181–189

    Google Scholar 

  • Bestelmeyer BT, Ward JP, Havstad KM (2006) Soil-geomorphic heterogeneity governs patchy vegetation dynamics at an arid ecotone. Ecol 87:963–973

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582

    CAS  PubMed  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Chang Biol 10:1756–1766

    Google Scholar 

  • Bristow CS, Duller GAT, Lancaster N (2007) Age and dynamics of linear dunes in the Namib Desert. Geology 35:555–558

    Google Scholar 

  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247

    PubMed  Google Scholar 

  • Carbone MS, Still CJ, Ambrose AR, Dawson TE, Williams AP, Boot CM, Schaeffer SM, Schimel JP (2011) Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 167:265–278

    PubMed  Google Scholar 

  • Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc 83:596–610

    Google Scholar 

  • Collins SL, Belnap J, Grimm NB, Rudgers JA, Dahm CN, D’Odorico P, Litvak M, Natvig DO, Peters DC, Pockman WT, Sinsabaugh RL, Wolf BO (2014) A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems. Annu Rev Ecol Syst 45:397–419

    Google Scholar 

  • Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004) Controls on soil respiration in semiarid soils. Soil Biol Biochem 36:945–951

    CAS  Google Scholar 

  • Cramer MD, Verboom GA (2017) Measures of biologically relevant environmental heterogeneity improve prediction of regional plant species richness. J Biogeogr 44:579–591

    Google Scholar 

  • Crawford CS, Seely MK (1993) Dunefield detritus: its potential for limiting population size in Lepidochora dicoidalis (Coleoptera: Tenebrionidae) in the Namib Desert. J Afr Zool 107:527–533

    Google Scholar 

  • Davidson EA, Savage K, Verchot LV, Navarro R (2002) Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agric For Meteorol 113:21–37

    Google Scholar 

  • de Graaff MA, Throop HL, Verburg PSJ, Arnone JA, Campos X (2014) A synthesis of climate and vegetation cover effects on biogeochemical cycling in shrub-dominated drylands. Ecosystems 17:931–945

    Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Holland EA, Pendall E, Schimel DS, Ojima DS (2005) Modeling soil CO2 emissions from ecosystems. Biogeochemistry 73:71–91

    Google Scholar 

  • Eckardt FD, Livingstone I, Seely M, Von Holdt J (2013a) An introduction to the surface geology and geomorphology around Gobabeb, Namib Desert, Namibia. Geogr Ann A 95:271–284

    Google Scholar 

  • Eckardt FD, Soderberg K, Coop LJ, Muller AA, Vickery KJ, Grandin RD, Jack C, Kapalanga TS, Henschel J (2013b) The nature of moisture at Gobabeb, in the central Namib Desert. J Arid Environ 93:7–19

    Google Scholar 

  • Evans S, Todd-Brown KEO, Jacobson K, Jacobson P (2019) Non-rainfall moisture: a key driver of microbial respiration from standing litter in arid, semiarid, and mesic grasslands. Ecosystems. https://doi.org/10.1007/s10021-10019-00461-y

  • Fa K, Zhang Y, Lei G, Wu B, Qin S, Liu J, Feng W, Lai Z (2018) Underestimation of soil respiration in a desert ecosystem. Catena 162:23–28

    CAS  Google Scholar 

  • Field C, Behrenfeld M, Randerson J, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    CAS  PubMed  Google Scholar 

  • Fierer N, Schimel JP (2003) A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. Soil Sci Soc Am J 67:798–805

    CAS  Google Scholar 

  • Frossard A, Ramond J-B, Seely M, Cowan DA (2015) Water regime history drives responses of soil Namib Desert microbial communities to wetting events. Sci Rep 5:12263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb TR, Eckardt FD, Venter ZS, Cramer MD (2019) The contribution of fog to water and nutrient supply to Arthraerua leubnitziae in the central Namib Desert, Namibia. J Arid Environ 161:35–46

    Google Scholar 

  • Gunnigle E, Frossard A, Ramond JB, Guerrero L, Seely M, Cowan DA (2017) Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep 7:40189

  • Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J 65:1853–1856

    CAS  Google Scholar 

  • Hashimoto S, Carvalhais N, Ito A, Migliavacca M, Nishina K, Reichstein M (2015) Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12:4121–4132

    Google Scholar 

  • Henschel JR, Burke A, Seely M (2005) Temporal and spatial variability of grass productivity in the central Namib Desert. Afr Study Monog Suppl 30:43–56

    Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    PubMed  Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852

    CAS  Google Scholar 

  • Kidron GJ (2019) The enigmatic absence of cyanobacterial biocrusts from the Namib fog belt: do dew and fog hold the key? Flora 257:151416

    Google Scholar 

  • Lancaster J, Lancaster N, Seely MK (1984) Climate of the central Namib Desert. Madoqua 14:5–61

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil crusts: Field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Google Scholar 

  • Leon E, Vargas R, Bullock S, Lopez E, Panosso AR, La Scala JN (2014) Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem. Soil Biol Biochem 77:12–21

    CAS  Google Scholar 

  • Li B, Wang L, Kaseke KF, Vogt R, Li L, Seely MK (2018) The impact of fog on soil moisture dynamics in the Namib Desert. Adv Water Resour 113:23–29

    CAS  Google Scholar 

  • Liu Z, Zhang YQ, Fa KY, Qin SG, She WW (2017) Rainfall pulses modify soil carbon emission in a semiarid desert. Catena 155:147–155

    CAS  Google Scholar 

  • Mayor A, Bautista S, Rodriguez F, Kefi S (2019) Connectivity-mediated ecohydrological feedbacks and regime shifts in drylands. Ecosystems 22:1497–1511

    Google Scholar 

  • McCulley RL, Burke IC, Nelson JA, Lauenroth WK, Knapp AK, Kelly EF (2005) Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems 8:106–121

    CAS  Google Scholar 

  • McKenna OP, Sala OE (2016) Biophysical controls over concentration and depth distribution of soil organic carbon and nitrogen in desert playas. J Geophys Res-Biogeo 121:3019–3029

    CAS  Google Scholar 

  • Middleton N, Thomas DSG (eds) (1992) World atlas of desertification (United Nations Environment Programme). Second Edition. Edward Arnold, London

  • Mitchell D, Henschel JR, Hetem RS, Wassenaar TD, Strauss WM, Hanrahan SA, Seely MK (2020) Fog and fauna of the Namib Desert: past and future. Ecosphere 11:e02996

    Google Scholar 

  • Monger C, Sala OE, Duniway MC, Goldfus H, Meir IA, Poch RM, Throop HL, Vivoni ER (2015) Legacy effects in linked ecological-soil-geomorphic systems of drylands. Front Ecol Environ 13:13–19

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    CAS  PubMed  Google Scholar 

  • Müller C, Waha K, Bondeau A, Heinke J (2014) Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development. Glob Chang Biol 20:2505–2517

    PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2012) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Google Scholar 

  • Okin GS, MMD H, Saco PM, Throop HL, Vivoni ER, Parsons AJ, Wainwright J, Peters DPC (2015) Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front Ecol Environ 13:20–27

    Google Scholar 

  • Peters DPC, Bestelmeyer BT, Herrick JE, Fredrickson EL, Monger HC, Havstad KM (2006) Disentangling complex landscapes: new insights into arid and semiarid system dynamics. Bioscience 56:491–501

    Google Scholar 

  • Plaza C, Zaccone C, Sawicka K, Méndez AM, Tarquis A, Gascó G, Heuvelink GBM, Schuur EAG, Maestre FT (2018) Soil resources and element stocks in drylands to face global issues. Sci Rep 8:13788

    PubMed  PubMed Central  Google Scholar 

  • Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509:600–603

    CAS  PubMed  Google Scholar 

  • Prăvălie R (2016) Drylands extent and environmental issues. A global approach. Earth-Sci Rev 161:259–278

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/

  • Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cy 9:23–36

    CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    CAS  Google Scholar 

  • Ramond JB, Woodborne S, Hall G, Seely M, Cowan DA (2018) Namib Desert primary productivity is driven by cryptic microbial community N-fixation. Sci Rep 8:6921

    PubMed  PubMed Central  Google Scholar 

  • Rey A (2015) Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Chang Biol 21:1752–1761

  • Roland M, Serrano-Ortiz P, Kowalski AS, Goddéris Y, Sánchez-Cañete EP, Ciais P, Domingo F, Cuezva S, Sanchez-Moral S, Longdoz B, Yakir D, van Grieken R, Schott J, Cardell C, Janssens IA (2013) Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry. Biogeocsciences 10:5009–5017

    Google Scholar 

  • Saco PM, Willgoose GR, Hancock GR (2007) Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol Earth Syst Sci 11:1717–1730

    Google Scholar 

  • Schlesinger WH, Raikes JA, Hartley AE, Cross AF (1996) On the spatial pattern of soil nutrients in desert ecosystems. Ecol 77:364–374

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    CAS  PubMed  Google Scholar 

  • Scola V, Ramond JB, Frossard A, Zablocki O, Adriaenssens EM, Johnson RM, Seely M, Cowan DA (2018) Namib Desert soil microbial community diversity, assembly, and function along a natural xeric gradient. Microb Ecol 75:193–203

    CAS  PubMed  Google Scholar 

  • Seely MK, Louw GN (1980) First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J Arid Environ 3:25–54

    Google Scholar 

  • Shongwe ME, van Oldenborgh GJ, van den Hurk BJJM, de Boer B, Coelho CAS, van Aalst MK (2009) Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa J Climate 22:3819–3837

    Google Scholar 

  • Song W, Chen S, Wu B, Zhu Y, Zhou Y, Li Y, Cao Y, Lu Q, Lin G (2012) Vegetation cover and rain timing co-regulate the responses of soil CO2 efflux to rain increase in an arid desert ecosystem. Soil Biol Biochem 49:114–123

    CAS  Google Scholar 

  • Southgate RI, Masters P, Seely MK (1996) Precipitation and biomass changes in the Namib Desert dune ecosystem. J Arid Environ 33:267–280

    Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Chang Biol 13:426–436

    Google Scholar 

  • Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI, Seely M, Cowan DA (2013) Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles 17:329–337

    PubMed  Google Scholar 

  • Subke J-A, Inglima I, Francesca Cotrufo M (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12:921–943

    Google Scholar 

  • Takle ES et al (2003) High-frequency pressure variations in the vicinity of a surface CO2 flux chamber. Agric For Meteorol 114:245–250

    Google Scholar 

  • Thomas AD, Hoon SR, Linton PE (2008) Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl Soil Ecol 39 (3):254–263

  • Thomas AD, Hoon SR (2010) Carbon dioxide fluxes from biologically-crusted Kalahari Sands after simulated wetting. J Arid Environ 74:131–139

    Google Scholar 

  • Thomas AD, Elliott DR, Dougill AJ, Stringer LC, Hoon SR, Sen R (2018) The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implications of shrub encroachment for Kalahari rangelands. Land Degrad Dev 29:1306–1316

  • Throop HL, Belnap J (2019) Connectivity dynamics in dryland litter cycles: moving decomposition beyond spatial stasis. BioScience 69:602–614

    Google Scholar 

  • Tucker C et al (2017) The concurrent use of novel soil surface microclimate measurements to evaluate CO2 pulses in biocrusted interspaces in a cool desert ecosystem. Biogeochemistry 135:239–249

    CAS  Google Scholar 

  • Ullmann I, Büdel B (2001) Biological soil crusts of Africa. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 107–118. https://doi.org/10.1007/978-3-642-56475-8_9

    Chapter  Google Scholar 

  • Wang L, D’Odorico P, Ringrose S, Coetzee S, Macko SA (2007) Biogeochemistry of Kalahari sands. J Arid Environ 71:259–279

    Google Scholar 

  • Wang D, Gouhier TC, Menge BA, Ganguly AR (2015) Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518:390–394

    CAS  PubMed  Google Scholar 

  • Warner DL, Bond-Lamberty B, Jian J, Stell E, Vargas R (2019) Spatial predictions and associated uncertainty of annual soil respiration at the global scale. Global Biogeochem Cy 33:1733–1745

    CAS  Google Scholar 

  • Warren-Rhodes KA, McKay CP, Boyle LN, Wing MR, Kiekebusch EM, Cowan DA, Stomeo F, Pointing SB, Kaseke KF, Eckardt F, Henschel JR, Anisfeld A, Seely M, Rhodes KL (2013) Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat, and light. J Geophys Res-Biogeo 118:1451–1460

    Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

  • Yao J, Liu H, Huang J, Gao Z, Wang G, Li D, Yu H, Chen X (2020) Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat Commun 11:1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z-S, Dong XJ, Xu BX, Chen YL, Zhao Y, Gao YH, Hu YG, Huang L (2015) Soil respiration sensitivities to water and temperature in a revegetated desert. J Geophys Res-Biogeo 120:773–787

    Google Scholar 

  • Zhao Z, Peng C, Yang Q, Meng FR, Song X, Chen S, Epule TE, Li P, Zhu Q (2017) Model prediction of biome-specific global soil respiration from 1960 to 2012. Earth’s Future 5:715–729

    Google Scholar 

Download references

Acknowledgements

This contribution is an outcome of the 2015-2016 Summer Drylands Program (SDP) 19, an intensive field research program for current students and recent graduates of Namibian universities. This study was possible due to the dedicated fieldwork by SDP 19 participants from Namibia University of Science and Technology and University of Namibia (M. Donner, M. Hitila, K.T. Iita, K.E. Iyambo, S.N. Kalili, T.U. Kamburona, M.M. Liyeke, V.J. Marufu, P.V.I. Mundilo, S.N. Nuuyuni, J.I. Shimwafeni, V. Tjituka, R.S. Tshikesho). SDP 19 was generously funded by the Environmental Investment Fund (Namibia). Sincere thanks to Desert Research Foundation of Namibia and Gobabeb Research and Training Centre for hosting SDP. Support from G. Maggs-Kölling was critical to project success. University of Namibia and Namibia University of Science and Technology loaned the equipment which made this project possible. The Ministry of Environment and Tourism granted permission for research in the Namib-Naukluft Park. We appreciate assistance from N. Hornslein on soil moisture modeling. HT’s participation in this project was supported by the United States Fulbright Board, the United States National Science Foundation (DEB-0953864), and Arizona State University. We appreciate constructive criticism from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Throop.

Additional information

Responsible Editor: Matthew A. Bowker.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data Deposition Information:

The data associated with this manuscript are availble in Dryad at: https://doi.org/10.5061/dryad.fj6q573qp

Electronic supplementary material

ESM 1

(PDF 332 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Throop, H.L., Seely, M.K., Marufu, V.J. et al. Multiple scales of spatial heterogeneity control soil respiration responses to precipitation across a dryland rainfall gradient. Plant Soil 453, 423–443 (2020). https://doi.org/10.1007/s11104-020-04614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04614-0

Keywords

  • Arid
  • Hyper-arid
  • Carbon cycle
  • Climate change
  • Fog desert
  • Namib Desert