Skip to main content

Advertisement

Log in

Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Arbuscular mycorrhizal fungi play important roles in plant phosphorus (P) accumulation. The aim of this study was to uncover how and to what extent soil plant-available P levels and maize genotypes influence the contribution of mycorrhizal P uptake pathway to plant P nutrition.

Methods

We selected an old genotype HMY and a modern genotype XY335, combined with 32P labeling and qPCR to quantify P uptake efficiency of the direct pathway (DP) and the mycorrhizal pathway (MP) at three Olsen-P levels: 4.5 (low), 8 (medium) and 50 (high) mg kg−1.

Results

The P uptake efficiency ratio PAE-MP/PAE-DP was highest in the treatment with medium Olsen-P, and was correlated positively with MP contribution. The traits of arbuscular mycorrhizal fungi, such as percent colonization, hyphal length density, P uptake per unit hyphae length, and the expression of the mycorrhiza-specific P transporter ZmPT1;6 were higher in XY335 than HMY in high-P soil, which was in accordance with the importance of the MP contribution.

Conclusions

Greater mycorrhizal responsiveness in the modern maize genotype than the old genotype under high P soil condition is related to higher P uptake efficiency of MP than DP; the inherent potential of MP can be maximized by managing soil plant P availability to achieve optimal P supply in intensive farming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMF:

arbuscular mycorrhizal fungi

DP:

direct P uptake pathway

MP:

mycorrhizal P uptake pathway

MGR:

mycorrhizal growth response

MPR:

mycorrhizal phosphorus response

NM:

non-mycorrhizal

PAE:

phosphorus acquisition efficiency

References

  • An G, Kobayashi S, Enoki H, Sonobe K, Muraki M, Karasawa T, Ezawa T (2010) How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327:441–453

    CAS  Google Scholar 

  • Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157:97–105

    Google Scholar 

  • Benbi DK, Biswas CR (1999) Nutrient budgeting for phosphorus and potassium in a long-term fertilizer trial. Nutr Cycl Agroecosyst 54:125–132

    Google Scholar 

  • Chu Q, Wang XX, Yang Y, Chen FJ, Zhang FS, Feng G (2013) Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23:497–505

    CAS  PubMed  Google Scholar 

  • Culman SW, Young-Mathews A, Hollander AD, Ferris H, Sánchez-Moreno S, O’Geen AT, Jackson LE (2010) Biodiversity is associated with indicators of soil ecosystem functions over a landscape gradient of agricultural intensification. Landsc Ecol 25:1333–1348

    Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Chen KR, Teng W, Zhan A, Tong YP, Feng G, Cui ZL, Zhang FS, Chen XP (2014) Is the inherent potential of maize roots efficient for soil phosphorus acquisition? PLoS One 9:e90287

    PubMed  PubMed Central  Google Scholar 

  • Deng Y, Feng G, Chen XP, Zou CQ (2017) Arbuscular mycorrhizal fungal colonization is considerable at optimal Olsen-P levels for maximized yields in an intensive wheat-maize cropping system. Field Crop Res 209:1–9

    Google Scholar 

  • Estaún V, Calvet C, Camprubí A (2010) Effect of differences among crop species and cultivars on the arbuscular mycorrhizal symbiosis. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Heidelberg, Germany, pp 279–295

    Google Scholar 

  • Facelli E, Duan T, Smith SE, Christophersen HM, Facelli JM, Smith FA (2014) Opening the black box: outcomes of interactions between arbuscular mycorrhizal (AM) and non-host genotypes of Medicago depend on fungal identity, interplay between P uptake pathways and external P supply. Plant Cell Environ 37:1382–1392

    CAS  PubMed  Google Scholar 

  • Facelli E, Smith SE, Facelli JM, Christophersen HM, Andrew Smith F (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytologist 185(4):1050–1061

  • Gai JP, Gao WJ, Liu L, Chen Q, Feng G, Zhang JL, Li XL (2015) Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. J Soils Sediments 15:1200–1211

    Google Scholar 

  • Galván GA, Kuiper TW, Burger K, Keizer LCP, Hoekstra RF, Kik C, Scholten OE (2011) Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi. Theor Appl Genet 122:947–960

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    PubMed  PubMed Central  Google Scholar 

  • Hayman DS, Mosse B (1972) Plant growth responses to vesicular–arbuscular mycorrhiza. III. Increased uptake of labile P from soil. New Phytol 71:41–47

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Google Scholar 

  • Hildermann I, Messmer M, Dubois D, Boller T, Wiemken A, Mäder P (2010) Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. J Sci Food Agric 90:2027–2038

    CAS  PubMed  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen JB, Tang XY, Zhang FS (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Fitter AH (2013) Microbial mediation of plant competition and community structure. Funct Ecol 27:865–875

    Google Scholar 

  • Jakobsen I, Abbott L, Robson A (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 120:371–380

    CAS  Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    PubMed  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    CAS  PubMed  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757

    PubMed  Google Scholar 

  • Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Google Scholar 

  • Kalkhajeh YK, Huang B, Hu W, Holm PE, Hansen HC (2017) Phosphorus saturation and mobilization in two typical Chinese greenhouse vegetable soils. Chemosphere 172:316–324

    CAS  PubMed  Google Scholar 

  • Kitson RE, Mellon MG (1944) Colorimetric determination of phosphorus as molybdovanadophosphoric acid. Ind Eng Chem Anal Ed 16:379–383

    CAS  Google Scholar 

  • Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250

    CAS  Google Scholar 

  • Leiser WL, Olatoye MO, Rattunde HFW, Neumann G, Weltzien E, Haussmann BIG (2016) No need to breed for enhanced colonization by arbuscular mycorrhizal fungi to improve low-P adaptation of west African sorghums. Plant Soil 401:51–64

    CAS  Google Scholar 

  • Li H, Huang Q, Meng L, Ma L, Yuan F, Wang W, Zhang Z, Cui J, Shen X, Chen R et al (2011) Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant Soil 349:157–167

    CAS  Google Scholar 

  • Liu SL, Guo XL, Bai DS, Fan JL, He XH, Feng G (2016) Indigenous arbuscular mycorrhizal fungi alleviate salt stress and promote cotton and maize growth in saline fields. Plant Soil 398:195–206

    CAS  Google Scholar 

  • Liu W, Jiang SS, Zhang YL, Yue SC, Christie P, Murray PJ, Li XL, Zhang JL (2014) Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China plain. FEMS Microbiol Ecol 90:436–453

    CAS  PubMed  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512

    Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    CAS  PubMed  Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytol 72:127–136

    Google Scholar 

  • Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol 8:186–197

    CAS  PubMed  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    CAS  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circ. No. 939. USDA, Washington DC

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:45–45

    Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant Soil 70:199–209

    CAS  Google Scholar 

  • Postma-Blaauw MB, de Goede RGM, Bloem J, Faber JH, Brussaard L (2010) Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91:460–473

    PubMed  Google Scholar 

  • Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA (2006) Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia 147:348–358

    PubMed  Google Scholar 

  • Sawers RJH, Svane SF, Quan C, Grønlund M, Wozniak B, Gebreselassie MN, González-Muñoz E, Chávez Montes RA, Baxter I, Goudet J, Jakobsen I, Paszkowski U (2017) Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214:632–643

    CAS  PubMed  Google Scholar 

  • Shen JB, Yuan LX, Zhang JL, Li HG, Bai ZH, Chen XP, Zhang WF, Zhang FS (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, edition 3. Academic Press, London, UK

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    CAS  PubMed  Google Scholar 

  • Teng W, Deng Y, Chen XP, Xu XF, Chen YR, Lv Y, Zhao YY, Zhao XQ, He X, Li B et al (2013) Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat. J Exp Bot 64:1403–1411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1992) The effect of long-term applications of phosphorus-fertilizer on populations of vesicular arbuscular mycorrhizal fungi in pastures. Aust J Agri Res 43:1131–1142

    CAS  Google Scholar 

  • Treseder KK (2013) The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371:1–13

    CAS  Google Scholar 

  • Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, Hemerik L, de Vries FT, Bardgett RD, Brady MV et al (2014) Intensive agriculture reduces soil biodiversity across Europe. Glob Chang Biol 21:973–985

    PubMed  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Verbruggen E, Heijden MGA, Rillig MC, Kiers ET (2013) Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success. New Phytol 197:1104–1109

    PubMed  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    PubMed  Google Scholar 

  • Wang XR, Shen JB, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306

    CAS  Google Scholar 

  • Wang YT, Li T, Li YW, Björn LO, Rosendahl S, Olssen PA, Li SS, Fu XL (2015) Community dynamics of arbuscular mycorrhizal fungi in high-input and intensively irrigated rice cultivation systems. Appl Environ Microbiol 81:2958–2965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel K, Silva G, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol Biochem 72:88–96

    CAS  Google Scholar 

  • Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M (2013) Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci 4:533

    PubMed  PubMed Central  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896

    CAS  PubMed  Google Scholar 

  • York LM, Galindo-Castañeda T, Schussler JR, Lynch JP (2015) Evolution of US maize (Zea mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased tolerance of nitrogen stress. J Exp Bot 66:2347–2358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JM, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762

    CAS  PubMed  Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (U1703232) and National Key R&D Program of China (2017YFD0200200). We thank Professor Andrew Smith from The University of Adelaide for kindly revising the early manuscript version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Feng.

Additional information

Responsible Editor: Felipe E. Albornoz.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Q., Zhang, L., Zhou, J. et al. Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway. Plant Soil 449, 357–371 (2020). https://doi.org/10.1007/s11104-020-04494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04494-4

Keywords

Navigation