Abstract
Background
Phytoextraction is an in situ technique that can be applied to minerals and mining wastes using hyperaccumulator plants to purposely bio-concentrate high levels of metals or metalloids into their shoots in order to remove them from the substrate, while achieving monetary gain. Phytoextraction can be applied to a limited number of elements depending on the existence of hyperaccumulator plants with suitable characteristics. Although phytoextraction has been trialled in experimental settings, it requires testing at field scale to assess commercial broad-scale potential.
Scope
The novelty and purported environmental benefits of phytoextraction have attracted substantial scientific inquiry. The main limitation of phytoextraction with hyperaccumulators is the number of suitable plants with a high accumulation capacity for a target element. We outline the main considerations for applying phytoextraction using selected elemental case studies in which key characteristics of the element, hyperaccumulation and economic considerations are evaluated.
Conclusions
The metals cobalt, cadmium, thallium and rhenium and the metalloids arsenic and selenium are present in many types of minerals wastes, especially base metal mining tailings, at concentrations amenable for economic phytoextraction. Phytoextraction should focus on the most toxic elements (arsenic, cadmium, and thallium) or especially valuable elements (selenium, cobalt, and rhenium). The value proposition is in the clean-up of contaminated land in the case of toxic elements, whereas it is in the ‘bio-ore’ generated by the process in the case of valuable elements.
This is a preview of subscription content, access via your institution.


References
Abram U, Alberto R (2006) Technetium and rhenium: coordination chemistry and nuclear medical applications. J Braz Chem Soc 17:1486–1500. https://doi.org/10.1590/S0103-50532006000800004
Agency for Toxic Substances and Disease Registry (2017) ASTDR's substance priority list https://www.atsdr.cdc.gov/spl/. Accessed 14 January 2019
Anderson C, Brooks R, Stewart R, Simcock R, Robinson B (1999a) The phytoremediation and phytomining of heavy metals. In: PACRIM, Bali, Indonesia pp 127-135
Anderson C, Moreno F, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18(4):385–392. https://doi.org/10.1016/j.mineng.2004.07.002
Anderson CWN (2013) Hyperaccumulation by plants. In: Element recovery and sustainability. Green Chemistry Series. The Royal Society of Chemistry, pp 114-139. doi:https://doi.org/10.1039/9781849737340-00114
Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999b) Phytomining for nickel, thallium and gold. J Geochem Explor 67(1):407–415. https://doi.org/10.1016/S0375-6742(99)00055-2
Aoshima K (2016) Itai-itai disease: renal tubular osteomalacia induced by environmental exposure to cadmium—historical review and perspectives. Soil Sci Plant Nutr 62(4):319–326. https://doi.org/10.1080/00380768.2016.1159116
Apuan DA, Apuan MJB, Perez TR, Perez RE, Claveria RJR, Dorolina A, Tan M (2016) Propagation protocol of Pteris vittata L. using spores for phytoremediation. Int J Biosci 8(6):14–21. https://doi.org/10.12692/ijb/8.6.14-21
Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43(24):9361–9367. https://doi.org/10.1021/es9022738
Asami T (1984) Pollution of soils by cadmium. In: Nriagu JO (ed) Changing Metal Cycles and Human Health. Dahlem Workshop Reports, Life Sciences Research Report, Berlin, Heidelberg. Changing Metal Cycles and Human Health. Springer Berlin Heidelberg, pp 95-111
Askari Zamani MA, Hiroyoshi N, Tsunekawa M, Vaghar R, Oliazadeh M (2005) Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy 80(1):23–31. https://doi.org/10.1016/j.hydromet.2005.06.016
Bagavathiannan MV, Van Acker RC (2009) The biology and ecology of feral alfalfa (Medicago sativa L.) and its implications for novel trait confinement in North America. Crit Rev Plant Sci 28(1-2):69–87. https://doi.org/10.1080/07352680902753613
Baker AJM (1981) Accumulators and excluders -strategies in the response of plants to heavy metals. J Plant Nutr 3(1-4):643–654. https://doi.org/10.1080/01904168109362867
Baker AJM (1987) Metal tolerance. New Phytol 106:93–111. https://doi.org/10.1111/j.1469-8137.1987.tb04685.x
Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17(2):117–127. https://doi.org/10.1080/15226514.2013.862204
Bañuelos GS, Ajwa HA, Terry N, Zayed A (1997) Phytoremediation of selenium laden soils: a new technology. J Soil Water Concerv 52(6):426–430
Bañuelos GS, Cardon GE, Phene CJ, Wu L, Akohoue S, Zambrzuski S (1993) Soil boron and selenium removal by three plant species. Plant Soil 148(2):253–263. https://doi.org/10.1007/bf00012862
Bañuelos GS, Lin ZQ, Wu L, Terry N (2002) Phytoremediation of selenium-contaminated soils and waters: fundamentals and future prospects. Rev Environ Health 17(4):291–306. https://doi.org/10.1515/reveh.2002.17.4.291
Bañuelos GS, Mayland HF (2000) Absorption and distribution of selenium in animals consuming canola grown for selenium phytoremediation. Ecotoxicol Environ Saf 46(3):322–328. https://doi.org/10.1006/eesa.1999.1909
Banza CLN, Nawrot TS, Haufroid V, Decrée S, De Putter T, Smolders E, Kabyla BI, Luboya ON, Ilunga AN, Mutombo AM, Nemery B (2009) High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ Res 109(6):745–752. https://doi.org/10.1016/j.envres.2009.04.012
Barrett KA, McBride MB (2007) Dissolution of zinc-cadmium sulfide solid solutions in aerated aqueous suspension. Soil Sci Soc Am J 71(2):322–328. https://doi.org/10.2136/sssaj2006.0124
Beckett PHT, Davis RD (1977) Upper critical levels of toxic elements in plants. New Phytol 79(1):95–106
Bell PF, Parker DR, Page AL (1992) Contrasting selenate-sulfate interactions in selenium-accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56(6):1818–1824. https://doi.org/10.2136/sssaj1992.03615995005600060028x
Belzile N, Chen Y-W (2017) Thallium in the environment: a critical review focused on natural waters, soils, sediments and airborne particles. Appl Geochem 84:218–243. https://doi.org/10.1016/j.apgeochem.2017.06.013
Bendezú R, Fontboté L, Cosca M (2003) Relative age of Cordilleran base metal lode and replacement deposits, and high sulfidation Au–(Ag) epithermal mineralization in the Colquijirca mining district, central Peru. Miner Deposita 38(6):683–694. https://doi.org/10.1007/s00126-003-0358-z
Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865. https://doi.org/10.1021/es960552a
Bohn HL, McNeal BL, O'Connor GA (2001) Soil chemistry, Third edn. John Wiley & Sons Inc, New York
Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. In: Sparks DL (ed) Advances in agronomy, vol 112. Academic Press, pp 145-204. doi:https://doi.org/10.1016/B978-0-12-385538-1.00004-4
Borgmann U, Couillard Y, Doyle P, Dixon DG (2005) Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environ Toxicol Chem 24(3):641–652
Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293(1):153–176. https://doi.org/10.1007/s11104-007-9240-6
Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8(1):1–7. https://doi.org/10.1007/s000490050002
Bozhkov O, Tzvetkova C (2009) Advantages of rhenium phytomining by lucerne and clover from ore dressing soils. Paper presented at the 7th WSEAS International Conference on Environment, Ecosystems and Development, Puerto de la Cruze Tenerife, Canary Islands, Spain
Bozhkov O, Tzvetkova C, Blagoeva T (2008) An approach to rhenium phytorecovery from soils and waters in ore dressing regions of Bulgaria. In: WSEAS Intl Conf on Waste Management, Water Pollution, Air Pollution, Indoor Climate, Corfu, Greece, pp 262-265
Bozhkov O, Tzvetkova C, Borisova L, Bryskin B (2012) Phytomining: new method for rhenium. Adv Mater Process 170(5):34–37
Brandaleze E, Bazán V, Orozco I, Valentini M, Gomez G (2018) Application of thermal analysis to the rhenium recovery process from copper and molybdenum sulphides minerals. J Therm Anal Calorim 133(1):435–441. https://doi.org/10.1007/s10973-018-7104-3
Bravin MN, Tentscher P, Rose J, Hinsinger P (2009) Rhizosphere pH gradient controls copper availability in a strongly acidic soil. Environ Sci Technol 43(15):5686–5691. https://doi.org/10.1021/es900055k
Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48(2):541–544. https://doi.org/10.1007/bf02187261
Brooks RR (1987) Serpentine and its vegetation. Dioscorides Press, Portland, A multidisciplinary approach
Brooks RR, Anderson C, Stewart R, Robinson B (1999) Phytomining: growing a crop of a metal. Biologist 46:201–205
Brooks RR, Lee J, Reeves RD, Jaffré T (1977a) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57. https://doi.org/10.1016/0375-6742(77)90074-7
Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980) Hyperaccumulation of copper and cobalt — a review. Bull Soc Roy Bot Belgique 113(2):166–172
Brooks RR, Robinson BH, Howes AW, Chiarucci A (2001) An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv. for phytoremediation and phytomining of nickel. S Afr J Sci 97(11-12):558–560
Brooks RR, Wither ED, Zepernick B (1977b) Cobalt and nickel in Rinorea species. Plant Soil 47(3):707–712. https://doi.org/10.1007/bf00011041
Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57(1):59–84. https://doi.org/10.1111/j.1469-185X.1982.tb00364.x
Bullock LA, Parnell J, Perez M, Armstrong JG, Feldmann J, Boyce AJ (2018) High selenium in the Carboniferous Coal Measures of Northumberland, North East England. Int J Coal Geol 195:61–74. https://doi.org/10.1016/j.coal.2018.05.007
Bundesanstalt für Geowissenschaften und Rohstoffe (2017) Cobalt from the DR Congo — potential, risks and significance for the global cobalt market. Commodity TopNews, vol 53. Commodity TopNews, Hannover
Byers HG (1936) Selenium occurrence in certain soils in the United States, with a discussion of related topics. Second Report. Technical Bulletin No. 530. United States Department of Agriculture, Washington, D. C.
Cai S, Yue L, Shang Q, Nordberg G (1995) Cadmium exposure among residents in an area contaminated by irrigation water in China. Bull WHO 73(3):359–367
Candeias C, Ávila P, Coelho P, Teixeira JP (2018) Mining activities: health impacts. In: Reference module in earth systems and environmental sciences. Second edn. Elsevier. doi:https://doi.org/10.1016/B978-0-12-409548-9.11056-5
Cannon HL (1960) Botanical prospecting for ore deposits. Science 132(3427):591–598
Carr MH, Turekian KK (1961) The geochemistry of cobalt. Geochim Cosmochim Acta 23(1):9–60. https://doi.org/10.1016/0016-7037(61)90087-4
Chaignon V, Sanchez-Neira I, Herrmann P, Jaillard B, Hinsinger P (2003) Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ Pollut 123(2):229–238. https://doi.org/10.1016/S0269-7491(02)00374-3
Chaney R, Li YM, Brown S, Homer FA, Malik M, Js A, Baker A, Reeves R, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds) Phytoremediation of contamined soil and water. CRC Press, Boca Raton, FL pp, pp 129–158
Chaney R, Reeves RD, Baklanov AI, Centofanti T, Broadhurst C, Baker AJM, van der Ent A, Roseberg JR (2014) Phytoremediation and phytomining: using plants to remediate contaminated or mineralized environments. In: Rajakaruna N, Boyd RS, T H (eds) Plant Ecology and Evolution in Harsh Environments. Nova Science New York pp 365–391. doi:10.13140/2.1.3750.2721
Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land Treatment of Hazardous Wastes. Noyes Data Corporation Park Ridge, New Jersey, pp 50–76
Chaney RL (1989) Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food-chains. In: Bar-Yosef B, Barrow NJ, Goldshmid J (eds) Ecological Studies 74, Berlin, Heidelberg. Inorganic Contaminants in the Vadose Zone. Springer Berlin Heidelberg, pp 140-158
Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in Soils and Plants. Proceedings of the International Symposium on ‘Zinc in Soils and Plants’ held at The University of Western Australia, 27–28 September, 1993. Springer Netherlands, Dordrecht, pp 135-150. doi:https://doi.org/10.1007/978-94-011-0878-2_10
Chaney RL (2010) Cadmium and zinc. In: Hooda PS (ed) Trace elements in soils. Wiley, London, pp 409–440. https://doi.org/10.1002/9781444319477.ch17
Chaney RL (2015) How does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmers. Curr Pollut Rep 1(1):13–22. https://doi.org/10.1007/s40726-015-0002-4
Chaney RL (2019) Phytoextraction and phytomining of soil nickel. In: Tsadilas C, Rinklebe J, Selim M (eds) Nickel in Soils and Plants. CRC Press, Boca Raton. https://doi.org/10.1201/9781315154664
Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36(5):1429–1443. https://doi.org/10.2134/jeq2006.0514
Chaney RL, Baker AJM, Morel JL (2018) The long road to developing agromining/phytomining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 1–17. https://doi.org/10.1007/978-3-319-61899-9_1
Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. In: Cuypers A, Vangronsveld J (eds) Advances in botanical research, vol 83. Academic Press, pp 189-221. doi:https://doi.org/10.1016/bs.abr.2016.12.006
Chen T, Lei M, Wan X, Zhou X, Yang J, Guo G, Cai W (2018) Element case studies: arsenic. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 275–281. https://doi.org/10.1007/978-3-319-61899-9_17
Chen T, Liao X-Y, Huang Z-C, Lei M, Li W-X, Mo L-Y, An Z-Z, Wei C-Y, Xiao X-Y, Xie H (2007) Phytoremediation of arsenic-contaminated soil in China. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, Totowa, pp 393–404. https://doi.org/10.1007/978-1-59745-098-0_27
Chen T, Wei C, Huang Z, Huang Q, Lu Q, Fan Z (2002) Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin Sci Bull 47(11):902–905. https://doi.org/10.1360/02tb9202
Chour Z, Laubie B, Morel JL, Tang Y, Qiu R, Simonnot M-O, Muhr L (2018) Recovery of rare earth elements from Dicranopteris dichotoma by an enhanced ion exchange leaching process. Chemical Engineering and Processing - Process Intensification 130:208–213. https://doi.org/10.1016/j.cep.2018.06.007
Claveria RJR (2001) Mineral paragenesis of the Lepanto copper and gold and the Victoria gold deposits, Mankayan Mineral District, Philippines. Resour Geol 51(2):97–106. https://doi.org/10.1111/j.1751-3928.2001.tb00084.x
Coelho PCS, Teixeira JPF, Gonçalves ONBSM (2011) Mining activities: health impacts. In: Nriagu JO (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 788–802. https://doi.org/10.1016/B978-0-444-52272-6.00488-8
Corzo A, Gamboa N (2018) Environmental impact of mining liabilities in water resources of Parac micro-watershed, San Mateo Huanchor district, Peru. Environ Dev Sustainability 20(2):939–961. https://doi.org/10.1007/s10668-016-9899-z
Crespo J, Reich M, Barra F, Verdugo JJ, Martínez C (2018) Critical metal particles in copper sulfides from the supergiant Río Blanco porphyry Cu–Mo deposit, Chile. Minerals 8 (11):519. doi:10.20944/preprints201810.0322.v1
Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13(9):393–397. https://doi.org/10.1016/S0167-7799(00)88987-8
da Silva EB, de Oliveira LM, Wilkie AC, Liu Y, Ma LQ (2018) Arsenic removal from As-hyperaccumulator Pteris vittata biomass: coupling extraction with precipitation. Chemosphere 193:288–294. https://doi.org/10.1016/j.chemosphere.2017.10.116
Dalvi AD, Bacon WG, Osborne RC (2004) The past and the future of nickel laterites. In: PDAC 2004 International Convention, Trade Show and Investors Exchange, Toronto. The Prospectors and Developers Association of Canada pp 1-27
De Putter T, Decrée S, Nkulu CBL, Nemery B (2011) Mining the Katanga (DRC) Copperbelt: Geological aspects and impacts on public health and the environment — towards a holistic approach. Paper presented at the IGCP/SIDA Project 594, Inaugural Workshop, Kitwe, Zambia
Deng T-H-B, Cloquet C, Tang Y-T, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu R-L (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933. https://doi.org/10.1021/es5020955
Dino GA, Rossetti P, Biglia G, Coulon F, Gomes D, Wagland S, Luste S, Särkkä H, Ver C, Delafeld M, Pizza A (2016) SMART GROUND project: SMART data collection and integration platform to enhance availability and accessibility of data and information in the EU territory on secondary raw materials. Energy Procedia 97:15–22. https://doi.org/10.1016/j.egypro.2016.10.010
Dmowski K, Rossa M, Kowalska J, Krasnodębska-Ostręga B (2014) Thallium in spawn, juveniles, and adult common toads (Bufo bufo) living in the vicinity of a zinc-mining complex, Poland. Environ Monit Assess 187(1):4141. https://doi.org/10.1007/s10661-014-4141-7
Do C, Abubakari F, Corzo Remigio A, Brown GK, Casey LW, Burtet-Sarramegna V, Gei V, Erskine PD, van der Ent A (2020) A preliminary survey of nickel, manganese and zinc (hyper)accumulation in the flora of Papua New Guinea from herbarium X-ray fluorescence scanning. Chemoecology 30(1):1–13. https://doi.org/10.1007/s00049-019-00293-1
Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 135–156. https://doi.org/10.1007/978-3-319-61899-9_8
Echevarria G, Morel J-L (2015) Technosols of mining areas. Tôpicos Ci Solo IX (ISSN 1519-3934):92-111
Echevarria G, Vong PC, Leclerc-Cessac E, Morel JL (1997) Bioavailability of technetium-99 as affected by plant species and growth, application form, and soil incubation. J Environ Qual 26(4):947
Edraki M, Baumgartl T, Manlapig E, Bradshaw D, Franks DM, Moran CJ (2014) Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches. J Clean Prod 84:411–420. https://doi.org/10.1016/j.jclepro.2014.04.079
Ellen MacArthur Foundation (2014) Towards the circular economy. Vol 3: accelerating the scale-up across global supply chains, vol Vol 3. Ellen MacArthur Fundation, Cowes, Isle of Wight, UK
Elshkaki A, Graedel TE, Ciacci L, Reck BK (2018) Resource demand scenarios for the major metals. Environ Sci Technol 52(5):2491–2497. https://doi.org/10.1021/acs.est.7b05154
Ernst W (2005) Phytoextraction of mine wastes – options and impossibilities. Chem Erde Geochem 65(S1):29–42. https://doi.org/10.1016/j.chemer.2005.06.001
Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11(1):163–167. https://doi.org/10.1016/0883-2927(95)00040-2
Erskine P, van der Ent A, Fletcher A (2012) Sustaining metal-loving plants in mining regions. Science 337(6099):1172. https://doi.org/10.1126/science.337.6099.1172-b
Escarré J, Lefèbvre C, Raboyeau S, Dossantos A, Gruber W, Cleyet Marel JC, Frérot H, Noret N, Mahieu S, Collin C, van Oort F (2011) Heavy metal concentration survey in soils and plants of the Les Malines Mining District (Southern France): implications for soil restoration. Water, Air, Soil Pollut 216(1):485–504. https://doi.org/10.1007/s11270-010-0547-1
Espi JO, Kajiwara Y, Hawkins MA, Bainbridge T (2002) Hydrothermal alteration and Cu-Au mineralization at Nena high sulfidation-type deposit, Frieda River, Papua New Guinea. Resour Geol 52(4):301–313. https://doi.org/10.1111/j.1751-3928.2002.tb00141.x
Esser BK, Turekian KK (1993) The osmium isotopic composition of the continental crust. Geochim Cosmochim Acta 57(13):3093–3104. https://doi.org/10.1016/0016-7037(93)90296-9
European Chemical Society (2018) The 90 natural elements that make up everything. How much is there? Is that enough? European Chemical Society, Brussels, Belgium
Faucon M-P, Pourret O, Lange B (2018) Element case studies: cobalt and copper. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 233–239. https://doi.org/10.1007/978-3-319-61899-9_13
Filippou D, St-Germain P, Grammatikopoulos T (2007) Recovery of metal values from copper—arsenic minerals and other related resources. Miner Process Extr Metall Rev 28(4):247–298. https://doi.org/10.1080/08827500601013009
Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44(1):143–158. https://doi.org/10.1007/bf00228784
Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Selinus O (ed) Essentials of medical geology. Revised edn. Springer Dordrecht, Netherlands, pp 375-416. doi:https://doi.org/10.1007/978-94-007-4375-5_16
Forsyth BA (2014) Understanding the long-term seepage geochemistry of base metal mine tailings in a semiarid subtropical climate, Mount Isa, Australia. The University of Queensland, Sustainable Minerals Institute, Sustainable Minerals Institute
Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142(1):124–134. https://doi.org/10.1104/pp.106.081158
Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EA (2006) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173(3):517–525. https://doi.org/10.1111/j.1469-8137.2006.01943.x
Garrett RG, Porter ARD, Hunt PA, Lalor GC (2008) The presence of anomalous trace element levels in present day Jamaican soils and the geochemistry of Late-Miocene or Pliocene phosphorites. Appl Geochem 23(4):822–834. https://doi.org/10.1016/j.apgeochem.2007.08.008
Gei V, Erskine PD, Echevarria G, Isnard S, Fogliani B, Jaffré T, van der Ent A (2020) A systematic assessment of the occurrence of trace element hyperaccumulation in the flora of New Caledonia. Bot J Linn Soc. doi:In Press
Gei V, Erskine PD, Harris HH, Echevarria G, Mesjasz-Przybyłowicz J, Barnabas AD, Przybyłowicz WJ, Kopittke PM, van der Ent A (2018) Tools for the discovery of hyperaccumulator plant species and understanding their ecophysiology. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 117–133. https://doi.org/10.1007/978-3-319-61899-9_7
Gitari MW, Akinyemi SA, Ramugondo L, Matidza M, Mhlongo SE (2018) Geochemical fractionation of metals and metalloids in tailings and appraisal of environmental pollution in the abandoned Musina Copper Mine, South Africa. Environ Geochem Health 40(6):2421–2439. https://doi.org/10.1007/s10653-018-0109-9
Goodson CC, Parker DR, Amrhein C, Zhang Y (2003) Soil selenium uptake and root system development in plant taxa differing in Se-accumulating capability. New Phytol 159(2):391–401. https://doi.org/10.1046/j.1469-8137.2003.00781.x
Graedel TE, Harper EM, Nassar NT, Nuss P, Reck BK (2015) Criticality of metals and metalloids. In: Turner BL (ed) Proceedings of the National Academy of Sciences. vol 14. pp 4257-4262. doi:https://doi.org/10.1073/pnas.1500415112
Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9(2):95–98. https://doi.org/10.2113/gselements.9.2.95
Gunasekera CP, Martin LD, Siddique KHM, Walton GH (2006) Genotype by environment interactions of Indian mustard (Brassica juncea L.) and canola (B. napus L.) in Mediterranean-type environments: 1. Crop growth and seed yield. Eur J Agron 25(1):1–12. https://doi.org/10.1016/j.eja.2005.08.002
Gustin MS, Biester H, Kim CS (2002) Investigation of the light-enhanced emission of mercury from naturally enriched substrates. Atmos Environ 36(20):3241–3254. https://doi.org/10.1016/S1352-2310(02)00329-1
Gutiérrez M, Mickus K, Camacho LM (2016) Abandoned Pb-Zn mining wastes and their mobility as proxy to toxicity: a review. Sci Total Environ 565:392–400. https://doi.org/10.1016/j.scitotenv.2016.04.143
Hanson PJ, Lindberg SE, Tabberer TA, Owens JG, Kim K-H (1995) Foliar exchange of mercury vapor: evidence for a compensation point. Water Air Soil Pollut 80(1):373–382. https://doi.org/10.1007/bf01189687
Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36(5):1420–1428. https://doi.org/10.2134/jeq2006.0492
Harumain ZAS, Parker HL, Muñoz García A, Austin MJ, McElroy CR, Hunt AJ, Clark JH, Meech JA, Anderson CWN, Ciacci L, Graedel TE, Bruce NC, Rylott EL (2017) Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environ Sci Technol 51(5):2992–3000. https://doi.org/10.1021/acs.est.6b04821
Harvey M-A, Erskine PD, Harris HH, Brown GK, Pilon-Smits EA, Casey LW, Echevarria G, van der Ent A (2020) Distribution and chemical form of selenium in Neptunia amplexicaulis from Central Queensland, Australia. Metallomics. doi:In Press
Hazotte C, Laubie B, Rees F, Morel JL, Simonnot M-O (2017) A novel process to recover cadmium and zinc from the hyperaccumulator plant Noccaea caerulescens. Hydrometallurgy 174:56–65. https://doi.org/10.1016/j.hydromet.2017.09.012
He H, Dong Z, Pang J, Wu G-L, Zheng J, Zhang X (2018a) Phytoextraction of rhenium by lucerne (Medicago sativa) and erect milkvetch (Astragalus adsurgens) from alkaline soils amended with coal fly ash. Sci Total Environ 630:570–577. https://doi.org/10.1016/j.scitotenv.2018.02.252
He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Shang C, Luo L, Gao J, Tang L (2018b) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301. https://doi.org/10.1016/j.envres.2018.02.037
Huang L, Baumgartl T, Zhou L, Mulligan D (2014) The new paradigm for phytostabilising mine wastes-ecologically engineered pedogenesis and functional root zones. Paper presented at the Life of Mine 2014 Conference, Brisbane, QLD, 16-18 July 2014
Jaafarzadeh N, Hashempour Y, Ahmadi Angali K (2013) Acute toxicity test using cyanide on Daphnia magna by flow-through system. J Water Chem Techno 35(6):281–286. https://doi.org/10.3103/s1063455x13060076
Jaffré T (1979) Accumulation du manganèse par les Protéacées de Nouvelle Calédonie. C R Acad Sci 289:425–428
Jannas RR, Beane RE, Ahler BA, Brosnahan DR (1990) Gold and copper mineralization at the El Indio deposit, Chile. J Geochem Explor 36(1):233–266. https://doi.org/10.1016/0375-6742(90)90057-H
Jansen S, Broadley MR, Robbrecht E, Smets E (2002) Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68(2):235–269
Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182. https://doi.org/10.1093/bmb/ldg032
Jaszczak E, Polkowska Ż, Narkowicz S, Namieśnik J (2017) Cyanides in the environment—analysis—problems and challenges. Environ Sci Pollut Res Int 24(19):15929–15948. https://doi.org/10.1007/s11356-017-9081-7
Jiang J, Wu L, Li N, Luo Y, Liu L, Zhao Q, Zhang L, Christie P (2010) Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur J Soil Biol 46(1):18–26. https://doi.org/10.1016/j.ejsobi.2009.10.001
Jiang Y, Lei M, Duan L, Longhurst P (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: a UK contaminated land perspective. Biomass Bioenergy 83:328–339. https://doi.org/10.1016/j.biombioe.2015.10.013
Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, Third edn. CRC Press, Boca Raton
Karbowska B (2016) Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environ Monit Assess 188(11):640. https://doi.org/10.1007/s10661-016-5647-y
Kazantzis G (2000) Thallium in the environment and health effects. Environ Geochem Health 22(4):275–280. https://doi.org/10.1023/a:1006791514080
Keeling SM, Stewart RB, Anderson CWN, Robinson BH (2003) Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Int J Phytoremediation 5(3):235–244. https://doi.org/10.1080/713779223
Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249(1):67–81. https://doi.org/10.1023/A:1022590609042
Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T (2006) Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study. Int J Phytoremediation 8(4):311–322. https://doi.org/10.1080/15226510600992873
Khamkhash A, Srivastava V, Ghosh T, Akdogan G, Ganguli R, Aggarwal S (2017) Mining-related selenium contamination in Alaska, and the state of current knowledge. Minerals 7(3):46. https://doi.org/10.3390/min7030046
Kim S, Kwon H-J, Cheong H-K, Choi K, Jang J-Y, Jeong W-C, Kim D-S, Yu S, Kim Y-W, Lee K-Y, Yang S-O, Jhung IJ, Yang W-H, Hong Y-C (2008) Investigation on health effects of an abandoned metal mine. J Korean Med Sci 23(3):452–458. https://doi.org/10.3346/jkms.2008.23.3.452
Kinnunen PHM, Kaksonen AH (2019) Towards circular economy in mining: opportunities and bottlenecks for tailings valorization. J Clean Prod 228:153–160. https://doi.org/10.1016/j.jclepro.2019.04.171
Kolker A (2012) Minor element distribution in iron disulfides in coal: a geochemical review. Int J Coal Geol 94:32–43. https://doi.org/10.1016/j.coal.2011.10.011
Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19(3):159–204
Kozuchowski J, Johnson DL (1978) Gaseous emissions of mercury from an aquatic vascular plant. Nature 274(5670):468–469. https://doi.org/10.1038/274468a0
Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33(6):2090–2102. https://doi.org/10.2134/jeq2004.2090
Küpper H, Götz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151(2):702–714
LaCoste C, Robinson B, Brooks R, Anderson C, Chiarucci A, Leblanc M (1999) The phytoremediation potential of thallium-contaminated soils using iberis and Biscutella species. Int J Phytoremediation 1(4):327–338. https://doi.org/10.1080/15226519908500023
Lam Esquenazi E, Keith Norambuena B, Montofré Bacigalupo Í, Gálvez Estay M (2018) Evaluation of soil intervention values in mine tailings in northern Chile. PeerJ 6:e5879. https://doi.org/10.7717/peerj.5879
Lamb DT, Naidu R, Ming H, Megharaj M (2012) Copper phytotoxicity in native and agronomical plant species. Ecotoxicol Environ Saf 85:23–29. https://doi.org/10.1016/j.ecoenv.2012.08.018
Lange B, van der Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon M-P (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213(2):537–551. https://doi.org/10.1111/nph.14175
Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25. https://doi.org/10.4148/1090-7025.1015
Laubie B, Chour Z, Tang Y-T, Morel J-L, Simonnot M-O, Muhr L REE (2018) Recovery from the fern D. dichotoma by acid oxalic precipitation after direct leaching with EDTA. In: Davis BR, Moats MS, Wang S et al. (eds) Extraction 2018. The Minerals, Metals and Materials Series, Cham. Extraction 2018. Springer International Publishing, pp 2659-2667. doi:10.1007/978-3-319-95022-8_224
Leblanc M, Deram A, Robinson BH, Petit D, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from Southern France. Econ Geol 94(1):109–113. https://doi.org/10.2113/gsecongeo.94.1.109
Lèbre É, Corder G (2015) Integrating industrial ecology thinking into the management of mining waste. Resources 4(4):765. https://doi.org/10.3390/resources4040765
Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59(1):44–56. https://doi.org/10.1016/S0147-6513(03)00095-2
Lemly AD (2018) Selenium poisoning of fish by coal ash wastewater in Herrington Lake, Kentucky. Ecotoxicol Environ Saf 150:49–53. https://doi.org/10.1016/j.ecoenv.2017.12.013
Levinson AA (1974) Introduction to exploration geochemistry. Applied Publishing, Calgary
Leybourne MI, Cameron EM (2008) Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile. Chem Geol 247(1):208–228. https://doi.org/10.1016/j.chemgeo.2007.10.017
Li Y-M, Chaney RL, Brewer E, Roseberg R, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003a) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249(1):107–115. https://doi.org/10.1023/A:1022527330401
Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin J (2003b) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37(7):1463–1468. https://doi.org/10.1021/es0208963
Lis J, Pasieczna A, Karbowska B, Zembrzuski W, Lukaszewski Z (2003) Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environ Sci Technol 37(20):4569–4572. https://doi.org/10.1021/es0346936
Liu C, Yuan M, Liu W-S, Guo M-N, Huot H, Tang Y-T, Laubie B, Simonnot M-O, Morel JL, Qiu R-L (2018) Element case studies: rare earth elements. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 297–308. https://doi.org/10.1007/978-3-319-61899-9_19
Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145(1):11–20. https://doi.org/10.1046/j.1469-8137.2000.00560.x
London Metal Exchange (2018) Official prices: metals https://www.lme.com/Metals/. Accessed 9 January 2018
López Antón MA, Spears DA, Díaz Somoano M, Martínez Tarazona MR (2013) Thallium in coal: analysis and environmental implications. Fuel 105:13–18. https://doi.org/10.1016/j.fuel.2012.08.004
Lottermoser BG (2010a) Introduction to mine wastes. In: Mine wastes: characterization, treatment and environmental impacts Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1-41. doi:https://doi.org/10.1007/978-3-642-12419-8_1
Lottermoser BG (2010b) Tailings. In: Mine wastes: characterization, treatment and environmental impacts. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 205-241. doi:https://doi.org/10.1007/978-3-642-12419-8_4
Lund LJ, Betty EE, Page AL, Elliott RA (1981) Occurrence of naturally high cadmium levels in soils and its accumulation by vegetation. J Environ Qual 10(4):551–556. https://doi.org/10.2134/jeq1981.00472425001000040027x
Lussier C, Veiga V, Baldwin S (2003) The geochemistry of selenium associated with coal waste in the Elk River Valley, Canada. Environ Geol 44(8):905–913. https://doi.org/10.1007/s00254-003-0833-y
Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579. https://doi.org/10.1038/35054664
Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82. https://doi.org/10.1016/S0065-2113(05)86001-8
Malaisse F, Gregoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeolanthus biformifolius De Wild.: a hyperaccumulator of copper from Zaïre. Science 199(4331):887–888. https://doi.org/10.1126/science.199.4331.887
Malik M, Chaney RL, Brewer EP, Li Y-M, Angle JS (2000) Phytoextraction of soil cobalt using hyperaccumulator plants. Int J Phytoremediation 2(4):319–329. https://doi.org/10.1080/15226510008500041
Martos S, Gallego B, Sáez L, López-Alvarado J, Cabot C, Poschenrieder C (2016) Characterization of zinc and cadmium hyperaccumulation in three Noccaea (Brassicaceae) populations from non-metalliferous sites in the Eastern Pyrenees. Front Plant Sci 7(128). https://doi.org/10.3389/fpls.2016.00128
Mayland FH, James FL, Panter EK, Sonderegger LJ (1989) Selenium in seleniferous environments. In: Jacobs LW (ed) Selenium in agriculture and the environment vol 23, vol 23. WI pp, Soil Science Society of America and American Society of Agronomy Madison, pp 15–50. https://doi.org/10.2136/sssaspecpub23.c2
McCartha GL, Taylor CM, van der Ent A, Echevarria G, Navarrete Gutiérrez DM, Pollard AJ (2019) Phylogenetic and geographic distribution of nickel hyperaccumulation in neotropical Psychotria. Am J Bot 106(10):1377–1385. https://doi.org/10.1002/ajb2.1362
McGray CW, Hurwood IS (1963) Selenosis in North-Western Queensland associated with a marine Cretaceous formation. J Agric Sci 20:475–498
McLaughlin MJ, Henderson R (1999) Effect of zinc and copper on cadmium uptake by Thlaspi caerulescens and Cardaminopsis halleri. Paper presented at the Extended Proceedings of the 5th International Conference on the Biogeochemistry of Trace Elements, Vienna, Austria
Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116(3):278–283. https://doi.org/10.1289/ehp.10608
Mendoza-Amezquita E, Armienta-Hernandez MA, Ayora C, Soler A, Ramos-Ramirez E (2006) Potential lixiviation of trace elements in tailings from the mines La Asuncion and Las Torres in the Guanajuato Mining District, Mexico. Rev Mex Cienc Geol 23(1):75–83
Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold W, Koeberl C, Przybyłowicz W, Elz A, Głowacka B (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85
Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Nomura R, Ghomshei M, Meech JA (2005) Effect of thioligands on plant-Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant Soil 275(1):233. https://doi.org/10.1007/s11104-005-1755-0
Morris DFC, Short EL (1966) Minerals of rhenium. Mineral Mag 35(274):871–873
Mudd GM, Jowitt SM, Werner TT (2017) Corrigendum to “The world's lead–zinc mineral resources: scarcity, data, issues and opportunities” [Ore Geol. Rev. 80 (2017) 1160–1190]. Ore Geol Rev 89:1131. doi:https://doi.org/10.1016/j.oregeorev.2017.05.027
Mudd GM, Weng Z, Jowitt SM (2013) A detailed assessment of global Cu resource trends and endowments. Econ Geol 108(5):1163–1183. https://doi.org/10.2113/econgeo.108.5.1163
Munshower FF (1994) Practical handbook of disturbed land revegetation. CRC Press, Lewis, Boca Raton, Florida
Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by rice capable of accumulating Cd at high levels: reduction of cd content of rice grain. Environ Sci Technol 43(15):5878–5883. https://doi.org/10.1021/es8036687
Muravyov MI, Fomchenko NV (2018) Biohydrometallurgical treatment of old flotation tailings of sulfide ores containing non-nonferrous metals and gold. Miner Eng 122:267–276. https://doi.org/10.1016/j.mineng.2018.04.007
Nasab SK, Parizi HS, Saadloo M (2001) Acid mine drainage at Sarcheshmeh copper open pit mine. Paper presented at the 17th International Mining Congress and Exhibition of Turkey - IMCET 2001, Turkey,
National Geology and Mining Service of Chile (SERNAGEOMIN) (2016) Catastro de depositos de relaves en Chile. Mining Ministry. http://sitiohistorico.sernageomin.cl/mineria-relaves.php. Accessed 19 March 2019
Naumov AV (2007) Rhythms of rhenium. Russ J Non-Ferr Met 48(6):418–423. https://doi.org/10.3103/s1067821207060089
Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: acase study in a semi-arid zone. J Geochem Explor 96(2):183–193. https://doi.org/10.1016/j.gexplo.2007.04.011
Nelson E (2017) Digging for blue: electric cars have made this once obscure metal the hottest commodity of 2017. Quartz
Nelson PF, Morrison AL, Malfroy HJ, Cope M, Lee S, Hibberd ML, Meyer CP, McGregor J (2012) Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources. Atmos Environ 62:291–302. https://doi.org/10.1016/j.atmosenv.2012.07.067
Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing nickel phytomining: an agronomic perspective. Plant Soil 406(1):55–69. https://doi.org/10.1007/s11104-016-2859-4
Nkrumah PN, Chaney RL, Morel JL (2018) Agronomy of ‘metal crops’ used in agromining. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 19–38. https://doi.org/10.1007/978-3-319-61899-9_2
Nkrumah PN, Tisserand R, Chaney RL, Baker AJM, Morel JL, Goudon R, Erskine PD, Echevarria G, van der Ent A (2019) The first tropical ‘metal farm’: some perspectives from field and pot experiments. J Geochem Explor 198:114–122. https://doi.org/10.1016/j.gexplo.2018.12.003
Nkulu CBL, Casas L, Haufroid V, De Putter T, Saenen ND, Kayembe-Kitenge T, Musa Obadia P, Kyanika Wa Mukoma D, Lunda Ilunga J-M, Nawrot TS, Luboya Numbi O, Smolders E, Nemery B (2018) Sustainability of artisanal mining of cobalt in DR Congo. Nat Sustain 1(9):495–504. https://doi.org/10.1038/s41893-018-0139-4
North American Palladium (2018) Feasibility study for Lac des Iles Mine incorporating underground mining of the roby zone. North American Palladium Ontairo
Novo LAB, Mahler CF, González L (2015) Plants to harvest rhenium: scientific and economic viability. Environ Chem Lett 13(4):439–445. https://doi.org/10.1007/s10311-015-0517-3
Nowack B, Schulin R, Robinson BH (2006) Critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40(17):5225–5232. https://doi.org/10.1021/es0604919
Nriagu JO (1992) Toxic metal pollution in Africa. Sci Total Environ 121:1–37. https://doi.org/10.1016/0048-9697(92)90304-B
Okamoto A, Yamamuro M, Tatarazako N (2015) Acute toxicity of 50 metals to Daphnia magna. J Appl Toxicol 35(7):824–830. https://doi.org/10.1002/jat.3078
Oldfield JE (1999) Selenium world atlas. Selenium-Tellurium Development Association (STDA), Grimbergem, Belgium
Oldfield JE (2006) Selenium: a historical perspective. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health. Springer US, Boston, MA, pp 1–6. https://doi.org/10.1007/0-387-33827-6_1
Oorts K (2013) Copper. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp 367–394. https://doi.org/10.1007/978-94-007-4470-7_13
Page CN (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119(1):1–33. https://doi.org/10.1016/S0034-6667(01)00127-0
Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249(1):157–165. https://doi.org/10.1023/a:1022545629940
Pavoni E, Covelli S, Adami G, Baracchini E, Cattelan R, Crosera M, Higueras P, Lenaz D, Petranich E (2018) Mobility and fate of thallium and other potentially harmful elements in drainage waters from a decommissioned Zn-Pb mine (North-Eastern Italian Alps). J Geochem Explor 188:1–10. https://doi.org/10.1016/j.gexplo.2018.01.005
Pavoni E, Petranich E, Adami G, Baracchini E, Crosera M, Emili A, Lenaz D, Higueras P, Covelli S (2017) Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps). J Environ Manage 186:214–224. https://doi.org/10.1016/j.jenvman.2016.07.022
Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23(1):104–110. https://doi.org/10.1016/S1002-0160(12)60085-X
Peters GM, Maher WA, Jolley D, Carroll BI, Gomes VG, Jenkinson AV, McOrist GD (1999) Selenium contamination, redistribution and remobilisation in sediments of Lake Macquarie, NSW. Org Geochem 30(10):1287–1300. https://doi.org/10.1016/S0146-6380(99)00102-3
Peterson PJ, Benson LM, Zieve R (1981) Metalloids. In: Lepp NW (ed) Effect of heavy metal pollution on plants: effects of trace metals on plant function. Springer Netherlands, Dordrecht, pp 279–342. https://doi.org/10.1007/978-94-011-7339-1_8
Piperov NB, Atanassova R, Kotzeva BG, Iliev T (2017) Reequilibrated fluid inclusions in enargite-luzonite from the Chelopech high-sulfidation Cu-Au epithermal deposit (Bulgaria). N Jb Miner Abh 194(3):297–310. https://doi.org/10.1127/njma/2017/0023
Plant JA, Bone J, Voulvoulis N, Kinniburgh DG, Smedley PL, Fordyce FM, Klinck B (2014) Arsenic and selenium. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, Second edn. Elsevier, Oxford, pp 13–57. https://doi.org/10.1016/B978-0-08-095975-7.00902-5
Pošćić F, Marchiol L, Schat H (2013) Hyperaccumulation of thallium is population-specific and uncorrelated with caesium accumulation in the thallium hyperaccumulator, Biscutella laevigata. Plant Soil 365(1):81–91. https://doi.org/10.1007/s11104-012-1384-3
Prasad MS (1989) Production of copper and cobalt at Gécamines, Zaïre. Miner Eng 2(4):521–541. https://doi.org/10.1016/0892-6875(89)90087-3
Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol Evol Syst 6(1):105–124. https://doi.org/10.1078/1433-8319-00045
Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249(1):57–65. https://doi.org/10.1023/A:1022572517197
Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel J-L, Echevarria G, Goncharova N (eds) Phytoremediation of metal-contaminated soils. Springer Netherlands, Dordrecht, pp 25–52
Reeves RD, Baker AJM (2000) Metal-accumulating plants. Phytoremediation of toxic metals: using plants to clean up the environment. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229
Reeves RD, Baker AJM, Jaffré T, Erskine PD, Echevarria G, van der Ent A (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411. https://doi.org/10.1111/nph.14907
Reeves RD, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3(2):145–172. https://doi.org/10.1080/15226510108500054
Reeves RD, van der Ent A, Baker AJM (2018) Global distribution and ecology of hyperaccumulator plants. In: Van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 75–92. https://doi.org/10.1007/978-3-319-61899-9_5
Ressources21 (2015) Laboratory of Excellence Ressources21 "Strategic metals in the 21st century" Mid-term activity report 2011-2014. University of Lorraine Nancy, France
Riley KW, French DH, Lambropoulos NA, Farrell OP, Wood RA, Huggins FE (2007) Origin and occurrence of selenium in some Australian coals. Int J Coal Geol 72(2):72–80. https://doi.org/10.1016/j.coal.2006.12.010
Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Safety and Health at Work 4(1):12–26. https://doi.org/10.5491/SHAW.2013.4.1.12
Robinson B, Anderson C (2018) Element case studies: thallium and noble metals. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 253–261. https://doi.org/10.1007/978-3-319-61899-9_15
Robinson BH, Anderson CWN, Dickinson NM (2015) Phytoextraction: where’s the action? J Geochem Explor 151:34–40. https://doi.org/10.1016/j.gexplo.2015.01.001
Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60(2):115–126. https://doi.org/10.1016/S0375-6742(97)00036-8
Rusznyák I, György L, Ormai S, Millner T (1968) On some potassium-like qualities of the thallium ion. Experientia 24(8):809–810. https://doi.org/10.1007/bf02144884
Sandy T, DiSante C (2010) Review of available technologies for the removal of selenium from water. Technical Report. North American Metals Council, CH2M Hill: Englewood, CO, USA
Santillan-Medrano J, Jurinak JJ (1975) The Chemistry of lead and cadmium in soil: solid phase formation. Soil Sci Soc Am J 39(5):851–856. https://doi.org/10.2136/sssaj1975.03615995003900050020x
Scheckel KG, Lombi E, Rock SA, McLaughlin MJ (2004) In vivo synchrotron study of thallium speciation and compartmentation in Iberis intermedia. Environ Sci Technol 38(19):5095–5100. https://doi.org/10.1021/es049569g
Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249(1):27–35
Senior GD, Guy PJ, Bruckard WJ (2006) The selective flotation of enargite from other copper minerals — a single mineral study in relation to beneficiation of the Tampakan deposit in the Philippines. Int J Miner Process 81(1):15–26. https://doi.org/10.1016/j.minpro.2006.06.001
Shedd KB, McCullough EA, Bleiwas DI (2017) Global trends affecting the supply security for cobalt. Mining Engineering, 69.
Simmons RW, Chaney RL, Angle JS, Kruatrachue M, Klinphoklap S, Reeves RD, Bellamy P (2015) Towards practical cadmium phytoextraction with. Noccaea caerulescens Int J Phytoremediation 17(2):191–199. https://doi.org/10.1080/15226514.2013.876961
Simonnot M-O, Vaughan J, Laubie B (2018) Processing of bio-ore to products. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 39–51. https://doi.org/10.1007/978-3-319-61899-9_3
Singh N, Ma LQ (2007) Assessing plants for phytoremediation of arsenic-contaminated soils. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press, Totowa, NJ, pp 319–347. https://doi.org/10.1007/978-1-59745-098-0_24
Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568. https://doi.org/10.1016/S0883-2927(02)00018-5
Smolders E, Mertens J (2013) Cadmium. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp 283–311. https://doi.org/10.1007/978-94-007-4470-7_10
Tabasi S, Hassani H, Azadmehr R (2017) Phytoextraction-based process of metal absorption from soil in mining areas (tailing dams) by Medicago sativa L. (Alfalfa) (Case study: Sarcheshmeh porphyry copper mine, SE of Iran). J Min Environ 8(3):419–431. https://doi.org/10.22044/jme.2017.897
Tagami K, Uchida S (2004) Comparison of transfer and distribution of technetium and rhenium in radish plants from nutrient solution. Appl Radiat Isot 61(6):1203–1210. https://doi.org/10.1016/j.apradiso.2004.05.074
Tagami K, Uchida S (2011) Rhenium: radionuclides. In: Scott RA (ed) Encyclopedia of inorganic and bioinorganic chemistry. doi:https://doi.org/10.1002/9781119951438.eibc0431
Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51(1):401–432. https://doi.org/10.1146/annurev.arplant.51.1.401
Thomas PJ, Carpenter D, Boutin C, Allison JE (2014) Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species. Chemosphere 96:57–66. https://doi.org/10.1016/j.chemosphere.2013.07.020
Thornton I (1986) Geochemistry of cadmium. In: Mislin H, Ravera O (eds) Cadmium in the environment. Birkhäuser Basel, Basel, pp 7–12. https://doi.org/10.1007/978-3-0348-7238-6_1
Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1):219–228. https://doi.org/10.1016/S0045-6535(99)00414-2
U.S. Geological Survey (2018) Mineral commodity summaries 2018. U.S. Geological Survey Reston, Virginia. doi:https://doi.org/10.3133/70194932
Ural Mining and Metallurgical Company (2019) History. https://www.ugmk.com/en/about/history/. Accessed 18/01/2019 2019
Uren NC (2013) Cobalt and manganese. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp 335–366. https://doi.org/10.1007/978-94-007-4470-7_12
Valenta RK, Kemp D, Owen JR, Corder GD, Lèbre É (2019) Re-thinking complex orebodies: consequences for the future world supply of copper. J Clean Prod 220:816–826. https://doi.org/10.1016/j.jclepro.2019.02.146
van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson CWN, Meech JA, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Rongliang Q, Mulligan DR (2015a) Agromining: farming for metals in the future? Environ Sci Technol 49(8):4773–4780. https://doi.org/10.1021/es506031u
van der Ent A, Baker AJM, Reeves RD, Pollard A, Schat H (2015b) Commentary: toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6(554). https://doi.org/10.3389/fpls.2015.00554
van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1):319–334. https://doi.org/10.1007/s11104-012-1287-3
van der Ent A, Echevarria G, Pollard AJ, Erskine PD (2019a) X-ray fluorescence ionomics of herbarium collections. Sci Rep 9(1):4746. https://doi.org/10.1038/s41598-019-40050-6
van der Ent A, Erskine P, Vinya R, Mesjasz-Przybylowicz J, Malaisse F (2019b) The potential of Zambian copper-cobalt metallophytes for remediation of minerals wastes. In: Ali S, Sturman K, Collins N (eds) Africa's mineral fortune: the science and politics of mining and sustainable development. Routledge (Taylor & Francis), London. https://doi.org/10.4324/9780429467424-15
van der Ent A, Mak R, de Jonge MD, Harris HH (2018) Simultaneous hyperaccumulation of nickel and cobalt in the tree Glochidion cf. sericeum (Phyllanthaceae): elemental distribution and chemical speciation. Sci Rep 8(9683):1–15. https://doi.org/10.1038/s41598-018-26891-7
Vangronsveld J, Cuypers A (2017) Preface. In: Cuypers A, Vangronsveld J (eds) Advances in botanical research, vol 83. Academic Press, pp xi-xiii. doi:https://doi.org/10.1016/S0065-2296(17)30043-5
Vaughan J, Riggio J, Chen J, Peng H, Harris HH, van der Ent A (2017) Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy 169:346–355. https://doi.org/10.1016/j.hydromet.2017.01.012
Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118(3):453–461. https://doi.org/10.1016/S0269-7491(01)00293-7
Walker DJ, Bernal MP (2004) The effects of copper and lead on growth and zinc accumulation of Thlaspi caerulescens J. and C. Presl: implications for phytoremediation of contaminated soils. Water Air Soil Pollut 151(1-4):361–372. https://doi.org/10.1023/b:Wate.0000009901.89000.40
Wan XM, Lei M, Huang ZC, Chen TB, Liu YR (2010) Sexual propagation of Pteris vittata L. influenced by pH, calcium, and temperature. Int J Phytoremediation 12(1):85–95. https://doi.org/10.1080/15226510902767148
Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366(2):701–721. https://doi.org/10.1016/j.scitotenv.2005.09.005
Wang YQ, Sun JX, Chen HM, Guo FQ (1997) Determination of the contents and distribution characteristics of REE in natural plants by NAA. J Radioanal Nucl Chem 219(1):99–103. https://doi.org/10.1007/bf02040273
Warren HV, Delavault RE (1950) Gold and silver content of some trees and horsetails in british columbia. Bull Geol Soc Am 61(2):123–128. https://doi.org/10.1130/0016-7606(1950)61[123:GASCOS]2.0.CO;2
Welch RM (1981) The biological significance of nickel. J Plant Nutr 3(1-4):345–356. https://doi.org/10.1080/01904168109362843
Whiting SN, Reeves RD, Baker AJM (2002) Conserving biodiversity: mining, metallophytes and land reclamation. Min Environ Mag 10:11–16
Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12(1):106–116. https://doi.org/10.1111/j.1061-2971.2004.00367.x
Wierzbicka M, Pielichowska M (2004) Adaptation of Biscutella laevigata L, a metal hyperaccumulator, to growth on a zinc–lead waste heap in southern Poland: I: Differences between waste-heap and mountain populations. Chemosphere 54(11):1663–1674. https://doi.org/10.1016/j.chemosphere.2003.08.031
Williamson A, Johnson MS (1981) Reclamation of metalliferous mine wastes. In: Lepp NW (ed) Effect of heavy metal pollution on plants: metals in the environment. Springer Netherlands, Dordrecht, pp 185–212. https://doi.org/10.1007/978-94-009-8099-0_6
Wu L, Hu P, Li Z, Zhou T, Zhong D, Luo Y (2018) Element case studies: cadmium and zinc. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 283–296. https://doi.org/10.1007/978-3-319-61899-9_18
Wu L, Zhong D, Du Y, Lu S, Fu D, Li Z, Li X, Chi Y, Luo Y, Yan J (2013a) Emission and control characteristics for incineration of Sedum plumbizincicola biomass in a laboratory-scale entrained flow tube furnace. Int J Phytoremediation 15(3):219–231. https://doi.org/10.1080/15226514.2012.687021
Wu LH, Liu YJ, Zhou SB, Guo FG, Bi D, Guo XH, Baker AJM, Smith JAC, Luo YM (2013b) Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299(3):487–498. https://doi.org/10.1007/s00606-012-0738-x
Yan X-L, Chen T-B, Liao X-Y, Huang Z-C, Pan J-R, Hu T-D, Nie C-J, Xie H (2008) Arsenic transformation and volatilization during incineration of the hyperaccumulator Pteris vittata L. Environ Sci Technol 42(5):1479–1484. https://doi.org/10.1021/es0717459
Yang J-g, J-y L, Yang J-y, X-l Z, Deng Z-x (2014) Hydrothermal processing of arsenic containing bioremediation biomass: Pteris vittata. Journal of Environmental Chemical Engineering 2(3):1358–1364. https://doi.org/10.1016/j.jece.2014.04.011
Zambrano MC, Yuan L, Yin X, Bañuelos G (2018) Element case studies: selenium. In: van der Ent A, Echevarria G, Baker AJM, Morel JL (eds) Agromining: farming for metals: extracting unconventional resources using plants. Springer International Publishing, Cham, pp 241–251. https://doi.org/10.1007/978-3-319-61899-9_14
Zhang Y, Wan X, Lei M (2017) Application of arsenic hyperaccumulator Pteris vittata L. to contaminated soil in Northern China. J Geochem Explor 182:132–137. https://doi.org/10.1016/j.gexplo.2016.07.025
Zhao F-J, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Front Plant Sci 61(1):535–559. https://doi.org/10.1146/annurev-arplant-042809-112152
Zhao FJ, Dunham SJ, McGrath SP (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156(1):27–31. https://doi.org/10.1046/j.1469-8137.2002.00493.x
Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151(3):613–620. https://doi.org/10.1046/j.0028-646x.2001.00213.x
Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249(1):37–43. https://doi.org/10.1023/a:1022530217289
Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted chinese rice. Environ Sci Technol 42(13):5008–5013. https://doi.org/10.1021/es8001103
Zientek ML, Bliss JD, Broughton DW, Christie M, Deniing PD, Hayes TS, Hitzman MW, Horton JD, Frist-Killian S, Jack DJ, Master S, Parks HL, Taylor CD, Wilson AB, Wintzer NE, Woodhead J (2014) Sediment-Hosted stratabound copper assessment of the Neoprotezoic Roan Group, Central African Copperbelt, Katanga Basin, Democratic of the Congo and Zambia: U.S. Geological Survey Scientific Investigations Report 2010-5090-T. Reston, VA. doi:https://doi.org/10.3133/sir20105090T
Acknowledgements
A. Corzo Remigio is the recipient of University of Queensland Research Training Scholarship, Australia.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible Editor: Juan Barcelo.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Corzo Remigio, A., Chaney, R.L., Baker, A.J.M. et al. Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations. Plant Soil 449, 11–37 (2020). https://doi.org/10.1007/s11104-020-04487-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11104-020-04487-3