Skip to main content

Advertisement

Log in

Exotic Spartina alterniflora Loisel. Invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The effects of invasive plants on soil carbon (C) and nitrogen (N) cycling are widely documented, while the mechanisms of their influences on the microbial ecology of soil remain unknown. Therefore, the objective of this study was to explore variations in soil bacterial communities following plant invasion, and the mechanisms that drive these changes.

Methods

An invasive perennial herb, Spartina alterniflora Loisel., was examined via 16S rRNA genetic sequencing analyses, to assess the impacts of plant invasion on soil bacterial communities compared to bare flat and native Suaeda salsa (L.) Pall., Scirpus mariqueter Tang et Wang, and Phragmites australis (Cav.) Trin. ex Steud. communities in the coastal zone of China.

Results

S. alterniflora invasion significantly increased soil bacterial abundance, species richness, and diversity for soil bacterial communities compared with native communities. S. alterniflora soil revealed a unique bacterial community composition, and possessed the highest relative abundance of chemo-lithoautotrophic bacteria, photoautotrophic bacteria (e.g., Chloroflexi, and Anaerolineae), and saprophytic and copiotrophic bacteria (e.g., Bacteroidetes) among the plant communities.

Conclusions

Our results demonstrated that invasive S. alterniflora significantly altered soil bacterial abundance, diversity, and community composition through increases in nutrient substrate levels and altering soil physiochemical properties. Subsequently, the modification of soil bacterial communities, especially increased relative abundances of Chloroflexi, Anaerolineae, and Bacteroidetes following S. alterniflora invasion can enhance the degradation of recalcitrant S. alterniflora materials, while inducing the accumulation of soil organic C and N. These changes further potentially impacted ecosystem C and N cycles in the coastal zone of China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACE:

Abundance-based coverage estimator

ANOVA:

One-way analysis of variance

BF:

Bare flat

C:

Carbon

Chao1:

Chao’s species richness estimator

C:N ratio:

Carbon: Nitrogen ratio

LDA:

Linear discriminant analysis

LEfSe:

Linear discriminant analysis effect size

N:

Nitrogen

OTUs:

Operational taxonomic units

PA:

Phragmites australis (Cav.) Trin. ex Steud.

PCoA:

Principal coordinates analysis

QIIME:

Quantitative insights into microbial ecology

qPCR:

Quantitative polymerase chain reaction

RDA:

Redundancy analysis

RDP:

Ribosomal database project

SA:

Spartina alternifolia Loisel.

Shannon:

Shannon’s diversity index

Simpson:

Simpson’s diversity index

SM:

Scirpus mariqueter Tang et Wang

SOC:

Soil organic carbon

SOM:

Soil organic matter

SON:

Soil organic nitrogen

SS:

Suaeda salsa (Linn.) Pall

WSOC:

Water-soluble organic carbon

References

  • Angel R, Soares MI, Ungar ED, Gillor O (2010) Biogeography of soil archaea and bacteria along a steep precipitation gradient. ISME J 4:553–563

    Article  PubMed  Google Scholar 

  • Bainard LD, Hamel C, Gan YT (2016) Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Appl Soil Ecol 105:160–168

    Article  Google Scholar 

  • Banerjee S, Helgason B, Wang LF, Winsley T, Ferrari BC, Siciliano SD (2016) Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biol Biochem 95:40–50

    Article  CAS  Google Scholar 

  • Bazzichetto M, Malavasi M, Barták V, Acosta ATR, Moudrý V, Carranza ML (2018) Modeling plant invasion on Mediterranean coastal landscapes: An integrative approach using remotely sensed data. Landscape Urban Plan 171:98–106

    Article  Google Scholar 

  • Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JS, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Zhou Z, Niu TH, An Y, Shen XL, Pan W, Chen ZH, Liu J (2017) Effects of side-stream ratio on sludge reduction and microbial structures of anaerobic side-stream reactor coupled membrane bioreactors. Bioresour Technol 234:380–388

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury N, Marschner P, Burns R (2011) Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil 344:241–254

    Article  CAS  Google Scholar 

  • Cole JR, Wang Q, Cardenas E et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145

    Article  CAS  PubMed  Google Scholar 

  • Daquiado AR, Kuppusamy S, Kim SY, Kim JH, Yoon Y, Kim PJ, Oh S, Kwak Y, Lee YB (2016) Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil. Appl Soil Ecol 108:84–91

    Article  Google Scholar 

  • DeCrappeo NM, DeLorenze EJ, Giguere AT, Pyke DA, Bottomley PJ (2017) Fungal and bacterial contributions to nitrogen cycling in cheatgrass-invaded and uninvaded native sagebrush soils of the western USA. Plant Soil 416:271–281

    Article  CAS  Google Scholar 

  • Ding JL, Jiang X, Ma MC, Zhou BK, Guan DW, Zhao BS, Zhou J, Cao FM, Li L, Li J (2016) Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of Northeast China. Appl Soil Ecol 105:187–195

    Article  Google Scholar 

  • Divíšek J, Chytrý M, Beckage B, Gotelli NJ, Lososová Z, Pyšek P, Richardson DM, Molofsky J (2018) Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat Commun 9:4631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Fahey C, Angelini C, Flory SL (2018) Grass invasion and drought interact to alter the diversity and structure of native plant communities. Ecology 99:2692–2702

    Article  PubMed  Google Scholar 

  • Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Forss J, Pinhassi J, Lindh M, Welander U (2013) Microbial diversity in a continuous system based on rice husks for biodegradation of the azo dyes reactive red 2 and reactive black 5. Bioresour Technol 130:681–688

    Article  CAS  PubMed  Google Scholar 

  • Francioli D, Schulz E, Lentendu G, Wubet T, Buscot F, Reitz T (2016) Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front Microbiol 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank GS, Nakatsu CH, Jenkins MA (2018) Soil chemistry and microbial community functional responses to invasive shrub removal in mixed hardwood forests. Appl Soil Ecol 131:75–88

    Article  Google Scholar 

  • Gaggini L, Rusterholz HP, Baur B (2018) The invasive plant Impatiens glandulifera affects soil fungal diversity and the bacterial community in forests. Appl Soil Ecol 124:335–343

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Gao YC, Wang JN, Guo SH, Hu YL, Li TT, Mao R, Zeng DH (2015) Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl Soil Ecol 86:165–173

    Article  Google Scholar 

  • Gao GF, Li PF, Zhong JX, Shen ZJ, Chen J, Li YT, Isabwe A, Zhu XY, Ding QS, Zhang S, Gao CH, Zheng HL (2019) Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland. Sci Total Environ 653:231–240

    Article  CAS  PubMed  Google Scholar 

  • He YH, Zhou XH, Cheng WS, Zhou LY, Zhang GD, Zhou GY, Liu RQ, Shao JJ, Zhu K, Cheng WX (2019) Linking improvement of soil structure to soil carbon storage following invasion by a C4 plant Spartina alterniflora. Ecosystems 22:859–872

    Article  CAS  Google Scholar 

  • Högberg MN, Baath E, Nordgren A, Arnebrant K, Högberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs – a hypothesis based on field observations in boreal forests. New Phytol 160:225–238

    Article  PubMed  CAS  Google Scholar 

  • Hughes RF, Archer SR, Asner GP, Wessman CA, Mcmurtry C, Nelson J, Ansley RJ (2006) Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Glob Chang Biol 12:1733–1747

    Article  Google Scholar 

  • Kamble PN, Gaikwad VB, Kuchekar SR, Bååth E (2014) Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur J Soil Biol 65:87–95

    Article  CAS  Google Scholar 

  • Keet JH, Ellis AG, Hui C, Le Roux JJ (2019) Strong spatial and temporal turnover of soil bacterial communities in South Africa's hyperdiverse fynbos biome. Soil Biol Biochem 136:107541

    Article  CAS  Google Scholar 

  • Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI (2015) Plant diversity increases soil bacterial activity and soil carbon storage. Nat Commun 6:6707

    Article  CAS  PubMed  Google Scholar 

  • Lazzaro L, Mazza G, d'Errico G et al (2018) How ecosystems change following invasion by Robinia pseudoacacia: insights from soil chemical properties and soil microbial, nematode, microarthropod and plant communities. Sci Total Environ 622–623:1509–1518

    Article  PubMed  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JQ, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems 10:1351–1361

    Article  CAS  Google Scholar 

  • Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, William WB, Coleman DC, Jien SH, Chiu CY (2017) Cedar and bamboo plantations alter structure and diversity of the soil bacterial community from a hardwood forest in subtropical mountain. Appl Soil Ecol 112:28–33

    Article  Google Scholar 

  • Lormières F, Oger PM (2017) Epsilonproteobacteria dominate bacterial diversity at a natural tar seep. C R Biol 340:238–243

    Article  PubMed  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori H, Maruyama F, Kato H, Toyoda A, Dozono A, Ohtsubo Y, Nagata Y, Fujiyama A, Tsuda M, Kurokawa K (2013) Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res 21:217–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morrissey E, Gillespie J, Morina J, Franklin RB (2014) Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob Chang Biol 20:1351–1362

    Article  PubMed  Google Scholar 

  • Nakamura A, Tun CC, Asakawa S, Kimura M (2003) Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipid fatty acid analysis. Biol Fert Soils 38:288–295

    Article  CAS  Google Scholar 

  • Negrin VL, Botté SE, La Colla NS, Marcovecchio JE (2019) Uptake and accumulation of metals in Spartina alterniflora salt marshes from a south American estuary. Sci Total Environ 649:808–820

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LTT, Osanai Y, Lai K, Anderson IC, Bange MP, Tissue DT, Singh BK (2018) Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: flooding or prolonged-drought. Soil Biol Biochem 118:227–236

    Article  CAS  Google Scholar 

  • Orwin KH, Dickie IA, Wood JR, Bonner KI, Holdaway RJ (2016) Soil microbial community structure explains the resistance of respiration to a dry-rewet cycle, but not soil functioning under static conditions. Funct Ecol 30:1430–1439

    Article  Google Scholar 

  • Pascault N, Ranjard L, Kaisermann A et al (2013) Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16:810–822

    Article  CAS  Google Scholar 

  • Piper CL, Siciliano SD, Winsley T, Lamb EG (2015) Smooth brome invasion increases rare soil bacterial species prevalence, bacterial species richness and evenness. J Ecol 103:386–396

    Article  CAS  Google Scholar 

  • Podosokorskaya OA, Bonch-Osmolovskaya EA, Novikov AA, Kolganova TV, Kublanov IV (2013) Ornatilinea apprima gen. Nov, sp. nov., a cellulolytic representative of the class Anaerolineae. Int J Syst Evol Micr 63:86–92

    Article  CAS  Google Scholar 

  • Portier E, Silver WL, Yang WH (2019) Invasive perennial forb effects on gross soil nitrogen cycling and nitrous oxide fluxes depend on phenology. Ecology 100:e02716

    Article  PubMed  Google Scholar 

  • Rath KM, Fierer N, Murphy DV, Rousk J (2019) Linking bacterial community composition to soil salinity along environmental gradients. ISME J 13:836–846

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Caballero G, Caravaca F, Alguacil MM, Fernández-López M, Fernández-González AJ, Roldána A (2017) Striking alterations in the soil bacterial community structure and functioning of the biological N cycle induced by Pennisetum setaceum invasion in a semiarid environment. Soil Biol Biochem 109:176–187

    Article  CAS  Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340–1351

    Article  PubMed  Google Scholar 

  • Santonja M, Fernandez C, Proffit M, Gers C, Gauquelin T, Reiter IM, Cramer W, Baldy V (2017) Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J Ecol 105:801–815

    Article  Google Scholar 

  • Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, Obersteiner M, Sigurdsson BD, Chen HYH, Peñuelas J (2017) Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Chang Biol 23:1282–1291

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb 75:7537–7541

    Article  CAS  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  PubMed  PubMed Central  Google Scholar 

  • Semrau JD (2011) Current knowledge of microbial community structures in landfills and its cover soils. Appl Microbiol Biot 89:961–969

    Article  CAS  Google Scholar 

  • Stefanowicz AM, Stanek M, Nobis M, Zubek S (2016) Species-specific effects of plant invasions on activity, biomass, and composition of soil microbial communities. Biol Fertil Soils 52:841–852

    Article  CAS  Google Scholar 

  • Steinauer K, Chatzinotas A, Eisenhauer N (2016) Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol Evol 6:7387–7396

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun RB, Zhang XX, Guo XS, Wang DZ, Chu HY (2015) Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 88:9–18

    Article  CAS  Google Scholar 

  • Szymura TH, Szymura M, Zaj XX, Guo XS (2018) Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Sci Total Environ 626:1373–1381

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Tharayil N (2014) Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems. New Phytol 203:110–124

    Article  CAS  PubMed  Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2:1–16

    Article  Google Scholar 

  • Trivedi P, Anderson IC, Singh BK (2013) Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol 21:641–651

    Article  CAS  PubMed  Google Scholar 

  • Vaz-Moreira I, Nunes O, Manaia CM (2017) Ubiquitous and persistent Proteobacteria and other gram-negative bacteria in drinking water. Sci Total Environ 586:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Verzeaux J, Alahmad A, Habbib H, Nivelle E, Roger D, Lacoux J, Decocq G, Hirel B, Catterou M, Spicher F, Dubois F, Duclercq J, Tetu T (2016) Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma 281:49–57

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Zhou HW (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microb 78:8264–8271

    Article  CAS  Google Scholar 

  • Wang RQ, Xiao YP, Lv FJ, Hu LY, Wei LE, Yuan ZQ, Lin HX (2018) Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping. Appl Soil Ecol 125:117–127

    Article  Google Scholar 

  • Wang ZY, Zhang HY, He CQ, Liu C, Liang X, Chen XP (2019) Spatiotemporal variability in soil sulfur storage is changed by exotic Spartina alterniflora in the Jiuduansha wetland, China. Eco Eng 133:160–166

    Article  Google Scholar 

  • Xi XF, Wang L, Hu JJ, Tang YS, Hu Y, Fu XH, Sun Y, Tsang YF, Zhang YN, Chen JH (2014) Salinity influence on soil microbial respiration rate of wetland in the Yangtze River estuary through changing microbial community. J Environ Sci-China 26:2562–2570

    Article  CAS  Google Scholar 

  • Xiang XJ, Gibbons SM, Li H, Shen HH, Fang JY, Chu HY (2018) Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem. Plant Soil 425:539–551

    Article  CAS  Google Scholar 

  • Xie ZF, Wang ZW, Wang QY, Zhu CW, Wu ZC (2014) An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification. Bioresour Technol 161:29–39

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Lu WJ, Liu YT, Ming ZY, Liu YJ, Meng RH, Wang HT (2017) Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq). Waste Manag 63:41–48

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Zhao H, Chen XL, Yin SL, Cheng XL, An XQ (2013) Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of eastern China. Ecol Eng 61:50–57

    Article  Google Scholar 

  • Yang W, Yan YE, Jiang F, Leng X, Cheng XL, An SQ (2016) Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408:443–456

    Article  CAS  Google Scholar 

  • Yang W, Zhao H, Leng X, Cheng XL, An SQ (2017) Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China. Catena 156:281–289

    Article  CAS  Google Scholar 

  • Yang W, Jeelani N, Xia L, Zhu ZH, Luo YQ, Cheng XL, An SQ (2019) Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshe of eastern China. Plant Soil 442:215–232

  • Yu HL, Ling N, Wang TT, Zhu C, Wang Y, Wang SJ, Gao Q (2019) Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Till Res 185:61–69

    Article  Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580

    Article  PubMed  Google Scholar 

  • Zeleke J, Sheng Q, Wang JG, Huang MY, Xia F, Wu JH, Quan ZX (2013) Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate- reducing bacteria in estuarine marsh sediments. Front Microbiol 4:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Hu Y, Liu M, Chang Y, Yan X, Bu R, Zhao D, Li Z (2017) Introduction and spread of an exotic plant, Spartina alterniflora, along coastal marshes of China. Wetlands 37:1181–1193

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the National Natural Science Foundation of China (grant no. 31600427), the Natural Science Foundation of Shaanxi Province, China (grant no. 2019JQ-666), the Fundamental Research Funds for the Central Universities (grant no. GK202003051), and the China Postdoctoral Science Foundation (grant no. 2016M590440). We would like to thank the entire staff of the Jiangsu Yancheng Wetland National Nature Reserve for Rare Birds for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Yang or Xiaoli Cheng.

Additional information

Responsible Editor: Elizabeth M Baggs.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.07 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Cai, A., Wang, J. et al. Exotic Spartina alterniflora Loisel. Invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 449, 97–115 (2020). https://doi.org/10.1007/s11104-020-04470-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04470-y

Keywords

Navigation