Comparing the impacts of an invasive grass on nitrogen cycling and ammonia-oxidizing prokaryotes in high-nitrogen forests, open fields, and wetlands

A Correction to this article is available

This article has been updated

Abstract

Aims

Numerous invasive plant species can increase soil nitrate (NO3) by altering the nitrification process through plant-soil microbe interactions with ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). We evaluated how the invasive species Microstegium vimineum influenced physico-chemical soil properties, inorganic nitrogen (N) cycling, and AOA and AOB abundances under various environmental conditions.

Methods

We paired 75 M. vimineum-invaded plots with 75 neighboring reference plots across forests, open fields, and forested wetlands within a state park in the Mid-Atlantic United States that has received high levels of N deposition. Soils were sampled for physico-chemical properties, NO3 and ammonium (NH4+) pools and availability, and AOA and AOB abundances.

Results

There were multiple soil impacts associated with M. vimineum across all ecosystems, most consistent were increased soil pH and increased NO3 pools. For other impacts, the directionality and effect sizes varied among ecosystems (e.g. NH4+ pools were 34% lower in forests, 35% lower in open fields, and 90% higher in wetlands relative to reference plots). Finally, forests had nearly all of impacts predicted by a pH-mediated nitrification plant-soil feedback.

Conclusion

This study highlights the ability of an invasive grass to alter N cycling and soil properties in forests, open fields, and wetlands that have received high N deposition. We also show how invader-mediated impacts to N cycling may be dependent on the context of the ecosystem being invaded, including its hydrology, ambient soil conditions, and substrate-availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Change history

  • 25 March 2020

    There is a formatting error which impacts the interpretation of Table 2.

References

  1. Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M et al (1998) Nitrogen saturation in temperate forest ecosystems. BioScience:921–934

  2. Adams SN, Engelhardt KA (2009) Diversity declines in Microstegium vimineum (Japanese stiltgrass) patches. Biol Conserv 142(5):1003–1010

    Article  Google Scholar 

  3. Barreto CR, Morrissey EM, Wykoff DD, Chapman SK (2018) Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands, 1–12.

  4. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, … Rcpp L (2015) Package ‘lme4.’ Convergence, 12(1)

  5. Binkley D (1984) Ion exchange resin bags: factors affecting estimates of nitrogen availability. Soil Sci Soc Am J 48(5):1181–1184

    CAS  Article  Google Scholar 

  6. Bradford MA, Wood SA, Maestre FT, Reynolds JF, Warren RJ (2012) Contingency in ecosystem but not plant community response to multiple global change factors. New Phytol 196(2):462–471. https://doi.org/10.1111/j.1469-8137.2012.04271.x

    PubMed  Article  Google Scholar 

  7. Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25(5):310–318

    PubMed  Article  Google Scholar 

  8. Chapman SK, Devine KA, Curran C, Jones RO, Gilliam FS (2015) Impacts of soil nitrogen and carbon additions on Forest understory communities with a long nitrogen deposition history. Ecosystems:1–13

  9. Cole PG, Weltzin JF (2004) Environmental correlates of the distribution and abundance of Microstegium vimineum, in East Tennessee. Southeast Nat 3(3):545–562. https://doi.org/10.1656/1528-7092(2004)003[0545:ECOTDA]2.0.CO;2

    Article  Google Scholar 

  10. DeMeester JE, Richter D dB (2010) Differences in wetland nitrogen cycling between the invasive grass Microstegium vimineum and a diverse plant community. Ecol Appl 20(3):609–619. https://doi.org/10.1890/09-0283.1

    PubMed  Article  Google Scholar 

  11. Di HJ, Cameron KC, Podolyan A, Robinson A (2014) Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol Biochem 73:59–68

    CAS  Article  Google Scholar 

  12. Dividson EA, Stark JM, Firestone MK (1990) Microbial production and consumpution of nitrate in an annual grassland. Ecology 71(5):1968–1975

    Article  Google Scholar 

  13. Doane TA, Horwath WR (2003) Spectrophotometric determination of nitrate with a single reagent. Anal Lett 36(12):2713–2722

    CAS  Article  Google Scholar 

  14. Drake DC (2011) Invasive legumes fix N2 at high rates in riparian areas of an N-saturated, agricultural catchment. J Ecol 99(2):515–523

    Google Scholar 

  15. Du E, de Vries W, Galloway JN, Hu X, Fang J (2014) Changes in wet nitrogen deposition in the United States between 1985 and 2012. Environ Res Lett 9(9):095004

    Article  Google Scholar 

  16. Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523

    CAS  Article  Google Scholar 

  17. Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  18. Ehrenfeld JG, Kourtev P, Huang W (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11(5):1287–1300

    Article  Google Scholar 

  19. Fraterrigo JM, Strickland MS, Keiser AD, Bradford MA (2011) Nitrogen uptake and preference in a forest understory following invasion by an exotic grass. Oecologia 167(3):781–791

    PubMed  Article  Google Scholar 

  20. Gilliam FS (2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. J Ecol 94(6):1176–1191

    CAS  Article  Google Scholar 

  21. Goulding KW, Bailey NJ, Bradbury NJ, Hargreaves P, Howe M, Murphy DV et al (1998) Nitrogen deposition and its contribution to nitrogen cycling and associated soil processes. New Phytol 139(1):49–58

    CAS  Article  Google Scholar 

  22. Horz H-P, Barbrook A, Field CB, Bohannan BJM (2004) Ammonia-oxidizing bacteria respond to multifactorial global change. Proc Natl Acad Sci U S A 101(42):15136–15141. https://doi.org/10.1073/pnas.0406616101

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Isobe K, Koba K, Suwa Y, Ikutani J, Fang Y, Yoh M, Mo J, Otsuka S, Senoo K (2012) High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition. FEMS Microbiol Ecol 80(1):193–203

    CAS  PubMed  Article  Google Scholar 

  24. Jones RO, Chapman SK (2011) The roles of biotic resistance and nitrogen deposition in regulating non-native understory plant diversity. Plant Soil 345(1–2):257–269. https://doi.org/10.1007/s11104-011-0778-y

    CAS  Article  Google Scholar 

  25. Kourtev PS, Ehrenfeld JG, Huang WZ. (1998) Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water Air Soil Pollut Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US201302935354

  26. Kourtev PS, Ehrenfeld JG, Huang WZ (2002) Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biol Biochem 34(9):1207–1218. https://doi.org/10.1016/S0038-0717(02)00057-3

    CAS  Article  Google Scholar 

  27. Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35(7):895–905

    CAS  Article  Google Scholar 

  28. Kramer TD, Warren RJ, Tang Y, Bradford MA (2012) Grass invasions across a regional gradient are associated with declines in belowground carbon pools. Ecosystems 15(8):1271–1282. https://doi.org/10.1007/s10021-012-9583-6

    Article  Google Scholar 

  29. Kuebbing SE, Nuñez MA, Simberloff D (2013) Current mismatch between research and conservation efforts: the need to study co-occurring invasive plant species. Biol Conserv 160:121–129

    Article  Google Scholar 

  30. Kumschick S, Gaertner M, Vilà M, Essl F, Jeschke JM, Pyšek P et al (2014) Ecological impacts of alien species: quantification, scope, caveats, and recommendations. BioScience 65(1):55–63

    Article  Google Scholar 

  31. Lee MR, Flory SL, Phillips RP (2012) Positive feedbacks to growth of an invasive grass through alteration of nitrogen cycling. Oecologia 170(2):457–465. https://doi.org/10.1007/s00442-012-2309-9

    PubMed  Article  Google Scholar 

  32. Leicht-Young SA, O’Donnell H, Latimer AM, Silander JA (2009) Effects of an invasive plant species, Celastrus orbiculatus, on soil composition and processes. Am Midl Nat 161(2):219–231. https://doi.org/10.1674/0003-0031-161.2.219

    Article  Google Scholar 

  33. Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177(3):706–714

    CAS  PubMed  Article  Google Scholar 

  34. Liu R, Hayden HL, Suter H, Hu H, Lam SK, He J et al (2017) The effect of temperature and moisture on the source of N 2 O and contributions from ammonia oxidizers in an agricultural soil. Biol Fertil Soils 53(1):141–152

    CAS  Article  Google Scholar 

  35. Lüdecke MD (2019) Package ‘sjstats’

  36. McGrath DA, Binkley MA (2009) Microstegium vimineum invasion changes soil chemistry and microarthropod communities in Cumberland plateau forests. Southeast Nat 8(1):141–156. https://doi.org/10.1656/058.008.0113

    Article  Google Scholar 

  37. McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM (2016) Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol 104(4):994–1002

    CAS  Article  Google Scholar 

  38. Morrill LG, Dawson JE (1967) Patterns observed for the oxidation of ammonium to nitrate by soil organisms 1. Soil Sci Soc Am J 31(6):757–760

    CAS  Article  Google Scholar 

  39. Nicol GW, Leininger S, Schleper C, Prosser JI (2008) The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ Microbiol 10(11):2966–2978

    CAS  PubMed  Article  Google Scholar 

  40. Paschke MW, Dawson JO, David MB (1989) Soil nitrogen mineralization in plantations ofJuglans nigra interplanted with actinorhizalElaeagnus umbellata orAlnus glutinosa. Plant Soil 118(1):33–42

    Article  Google Scholar 

  41. Piper CL, Lamb EG, Siciliano SD (2015) Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecol 216(2):235–246. https://doi.org/10.1007/s11258-014-0431-y

    Article  Google Scholar 

  42. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops H-P, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. R Core Team (2013) R: a language and environment for statistical computing

  44. Rhoads AF, Block TA (2008) Ridley Creek State Park. Retrieved from http://ww.friendsofrcsp.org/activities/RCSPInvasives08.pdf

  45. Rodrigues RR, Pineda RP, Barney JN, Nilsen ET, Barrett JE, Williams MA (2015) Plant invasions associated with change in root-zone microbial community structure and diversity. PLoS One 10(10):e0141424. https://doi.org/10.1371/journal.pone.0141424

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Schepers JS, Raun W, Agronomy, A. S. of. (2008) Nitrogen in agricultural systems. ASA-CSSA-SSSA

  47. Scherer HW (1993) Dynamics and availability of the non-exchangeable NH4-N—a review. Eur J Agron 2(3):149–160

    CAS  Article  Google Scholar 

  48. Shannon-Firestone S, Reynolds HL, Phillips RP, Flory SL, Yannarell A (2015) The role of ammonium oxidizing communities in mediating effects of an invasive plant on soil nitrification. Soil Biol Biochem 90:266–274. https://doi.org/10.1016/j.soilbio.2015.07.017

    CAS  Article  Google Scholar 

  49. Shultz CH (1999) The geology of Pennsylvania: Pennsylvania geological survey. Harrisburg, Pennsylvania

    Google Scholar 

  50. Sims GK, Ellsworth TR, Mulvaney RL (1995) Microscale determination of inorganic nitrogen in water and soil extracts. Commun Soil Sci Plant Anal 26(1–2):303–316

    CAS  Article  Google Scholar 

  51. Sokol NW, Kuebbing SE, Bradford MA (2017) Impacts of an invasive plant are fundamentally altered by a co-occurring forest disturbance. Ecology 98(8):2133–2144. https://doi.org/10.1002/ecy.1906

    PubMed  Article  Google Scholar 

  52. Stark JM, Firestone MK (1995) Mechanisms for soil moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61(1):218–221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Ste-Marie C, Paré D (1999) Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol Biochem 31(11):1579–1589. https://doi.org/10.1016/S0038-0717(99)00086-3

    CAS  Article  Google Scholar 

  54. Strickland MS, Devore JL, Maerz JC, Bradford MA (2010) Grass invasion of a hardwood forest is associated with declines in belowground carbon pools. Glob Chang Biol 16(4):1338–1350

    Article  Google Scholar 

  55. Szukics U, Abell GCJ, Hödl V, Mitter B, Sessitsch A, Hackl E, Zechmeister-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol 72(3):395–406. https://doi.org/10.1111/j.1574-6941.2010.00853.x

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Tourna M, Freitag TE, Nicol GW, Prosser JI (2008) Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ Microbiol 10(5):1357–1364

    CAS  PubMed  Article  Google Scholar 

  57. van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T et al (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276

    Article  Google Scholar 

  58. van der Putten WH, Bradford MA, Pernilla Brinkman E, van de Voorde TF, Veen GF (2016) Where, when and how plant–soil feedback matters in a changing world. Funct Ecol 30(7):1109–1121

    Article  Google Scholar 

  59. Vilà M, Basnou C, Pyšek P, Josefsson M, Genovesi P, Gollasch S et al (2010) How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. Front Ecol Environ 8(3):135–144

    Article  Google Scholar 

  60. Warren RJ II, Wright JP, Bradford MA (2011) The putative niche requirements and landscape dynamics of Microstegium vimineum: an invasive Asian grass. Biol Invasions 13(2):471–483

    Article  Google Scholar 

  61. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974

    CAS  Article  Google Scholar 

  62. Wei C, Yu Q, Bai E, Lü X, Li Q, Xia J, Kardol P, Liang W, Wang Z, Han X (2013) Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Chang Biol 19(12):3688–3697

    PubMed  Article  Google Scholar 

  63. Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. BioScience 55(6):477–487. https://doi.org/10.1641/0006-3568(2005)055[0477:BNGSCA]2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ridley Creek State Park for allowing us access to the property and the privilege to sample throughout the park (Permit #: 2016-40). We would also like to thank everyone who aided Rippel and Succi in field work, including: Tara Malanga, Drew Freed, Benjamin Gibbons, Ben Malone, Colin O’Mara, Frasier Green, Sean Lee, and Libby O’Brien. Revisions of this paper were greatly improved by anonymous reviewers, who provided extensive and useful feedback, as well Georgetown University’s EEB Journal Club and Madeline Buhman.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tyler M. Rippel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to incorrect format of table 2.

Responsible Editor: Elizabeth M Baggs.

Electronic supplementary material

ESM 1

(DOCX 395 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rippel, T.M., Iosue, C.L., Succi, P.J. et al. Comparing the impacts of an invasive grass on nitrogen cycling and ammonia-oxidizing prokaryotes in high-nitrogen forests, open fields, and wetlands. Plant Soil 449, 65–77 (2020). https://doi.org/10.1007/s11104-020-04458-8

Download citation

Keywords

  • Invasive species
  • Nitrogen cycling
  • Microstegium vimineum
  • Ammonia-oxidizing Archaea
  • Ammonia-oxidizing Bacteria