Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
CAS
PubMed
Article
Google Scholar
Alzarhani AK, Clark DR, Underwood GJC, Ford H, Cotton TEA, Dumbrell AJ (2019) Are drivers of root-associated fungal community structure context specific? The ISME Journal 13:1330–1344. https://doi.org/10.1038/s41396-019-0350-y
PubMed
PubMed Central
Article
Google Scholar
Ampt EA, van Ruijven J, Raaijmakers JM, Termorshuizen AJ, Mommer L (2018) Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands European. Journal of plant pathology. https://doi.org/10.1007/s10658-018-1573-x
Arnolds E, van den Berg A (2013) Beknopte Standaardlijst van Nederlandse Paddenstoelen [Concise checklist of Dutch macrofungi]. Nederlandse Mycologische Vereniging [Dutch Mycological Society],
Azcón-Aguilar C, Bago B, Barea JM (1999) Saprophytic growth of Arbuscular Mycorrhizal Fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, function. Molecular Biology and Biotechnology. Springer, Berlin Heidelberg, pp 391–408. https://doi.org/10.1007/978-3-662-03779-9_16
Chapter
Google Scholar
Baldrian P (2006) Fungal laccases – occurrence and properties 30:215-242 https://doi.org/10.1111/j.1574-4976.2005.00010.x
Bartón K (2016) R-package ‘MuMIn’, model selection and model averaging based on information criteria (AICc and alike). Vienna, Austria
Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4 2015 67:48 doi:10.18637/jss.v067.i01
Berg B (1986) Nutrient release from litter and humus in coniferous forest soils—a mini review. Scand J For Res 1:359–369
Article
Google Scholar
Berg B, Laskowski R (2005) Decomposers: soil microorganisms and animals. In: advances in ecological research, vol 38. Academic press, pp 73-100. doi:https://doi.org/10.1016/S0065-2504(05)38003-2
Berg B, McClaugherty C (2014a) Decomposer organisms. In: Plant litter: decomposition, humus formation, Carbon Sequestration. Springer Berlin Heidelberg, pp 35–52. doi:https://doi.org/10.1007/978-3-642-38821-7_3
Berg B, McClaugherty C (2014b) Decomposition of fine root and Woody litter. In: Plant litter: decomposition, humus formation, Carbon Sequestration. Springer Berlin Heidelberg, pp 171–187. doi:https://doi.org/10.1007/978-3-642-38821-7_8
Bills GF, Gloer JB, An ZQ (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16:549–565
CAS
PubMed
Article
Google Scholar
Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632. https://doi.org/10.1890/07-0986.1
Article
PubMed
Google Scholar
Bray SR, Kitajima K, Mack MC (2012) Temporal dynamics of microbial communities on decomposing leaf litter of 10 plant species in relation to decomposition rate. Soil Biol Biochem 49:30–37
CAS
Article
Google Scholar
Burnham KP, Anderson DR (2002) Advanced issues and deeper insights. In: Burnham KP, Anderson DR (eds) Model selection and multimodel inference: a practical information-theoretic approach. Springer New York, New York, pp 267–351. https://doi.org/10.1007/978-0-387-22456-5_6
Chapter
Google Scholar
Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat methods 7:335–336. https://doi.org/10.1038/nmeth.f.303
CAS
PubMed
PubMed Central
Article
Google Scholar
Carrillo Y, Ball BA, Bradford MA, Jordan CF, Molina M (2011) Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil. Soil Biology and Biochemistry 43:1440–1449. https://doi.org/10.1016/j.soilbio.2011.03.011
CAS
Article
Google Scholar
Chapin F. S, Matson P. A, Vitousek P. M (2011) Carbon inputs to ecosystems. In: Principles of terrestrial ecosystem ecology. Springer New York, New York, pp 123–156. doi:https://doi.org/10.1007/978-1-4419-9504-9_5
Chen H et al (2017) Plant species richness negatively affects root decomposition in grasslands. J Ecol 105:209–218
CAS
Article
Google Scholar
Cline LC, Hobbie SE, Madritch MD, Buyarski CR, Tilman D, Cavender-Bares JM (2018) Resource availability underlies the plant-fungal diversity relationship in a grassland ecosystem. Ecology 99:204–216
PubMed
Article
Google Scholar
Cline LC, Zak DR (2015) Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology 96:3374–3385. https://doi.org/10.1890/15-0184.1
PubMed
Article
Google Scholar
Cong WF, Ruijven J, Mommer L, De Deyn GB, Berendse F, Hoffland E (2014) Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology 102:1163–1170
CAS
Article
Google Scholar
Cong WF, van Ruijven J, van der Werf W, De Deyn GB, Mommer L, Berendse F, Hoffland E (2015) Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil. Soil Biology and Biochemistry 80:341–348
CAS
Article
Google Scholar
Cornelissen JHC, Grootemaat S, Verheijen LM, Cornwell WK, van Bodegom PM, van der Wal R, Aerts R (2017) Are litter decomposition and fire linked through plant species traits? New Phytol 216:653–669. https://doi.org/10.1111/nph.14766
CAS
PubMed
Article
Google Scholar
Cornwell WK et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x
PubMed
Article
Google Scholar
De Deyn GB, Quirk H, Bardgett RD (2011) Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biol Letters 7:75–78
Article
Google Scholar
de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239
PubMed
Article
Google Scholar
Dean SL, Farrer EC, Taylor DL, Porras-Alfaro A, Suding KN, Sinsabaugh RL (2014) Nitrogen deposition alters plant–fungal relationships: linking belowground dynamics to aboveground vegetation change. Mol Ecol 23:1364–1378. https://doi.org/10.1111/mec.12541
CAS
PubMed
Article
Google Scholar
Debnath S, Patra AK, Ahmed N, Kumar S, Dwivedi BS (2015) Assessment of microbial biomass and enzyme activities in soil under temperate fruit crops in north western himalayan region. Journal of soil science and plant nutrition 15:848–866
CAS
Google Scholar
Dighton J (2016) Fungi in ecosystem processes. Mycology, second edition edn. CRC press, Boca Raton
Book
Google Scholar
Dighton J, White J (2017) The fungal community: its organization and role in the ecosystem, fourth edition. Mycology, fourth edition edn. CRC press, Boca Raton
Book
Google Scholar
Domsch K, Gams W, Anderson T (2007) Compendium of soil fungi, Second edition. 2nd edn edn. IHW Verlag, Eching
Google Scholar
Dray S, Legendre P, Blanchet G (2011) Packfor: forward selection with permutation R package version 0.0-8/r100 edn.,
Dumbrell AJ, Ferguson RMW, Clark DR (2017) Microbial community analysis by single-amplicon high-throughput next generation sequencing: data analysis – from raw output to ecology. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols: microbial quantitation. Community Profiling and Array Approaches. Springer, Berlin Heidelberg, pp 155–206. https://doi.org/10.1007/8623_2016_228
Chapter
Google Scholar
Eisenhauer N, Milcu A, Nitschke N, Sabais AC, Scherber C, Scheu S (2009) Earthworm and belowground competition effects on plant productivity in a plant diversity gradient. Oecologia 161:291–301. https://doi.org/10.1007/s00442-009-1374-1
PubMed
PubMed Central
Article
Google Scholar
Eisenhauer N, Reich PB, Isbell F (2012) Decomposer diversity and identity influence plant diversity effects on ecosystem functioning. Ecology 93:2227–2240. https://doi.org/10.1890/11-2266.1
PubMed
Article
Google Scholar
Elle O, Richter R, Vohland M, Weigelt A (2019) Fine root lignin content is well predictable with near-infrared spectroscopy Scientific Reports
Fang C, Moncrieff JB (2005) The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil 268:243–253
CAS
Article
Google Scholar
Fargione J et al (2007) From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proceedings biological sciences 274:871–876. https://doi.org/10.1098/rspb.2006.0351
PubMed
PubMed Central
Article
Google Scholar
Farr D, Rossman A (2014) Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA
Fornara DA, Tilman D (2008) Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology 96:314–322. https://doi.org/10.1111/j.1365-2745.2007.01345.x
CAS
Article
Google Scholar
Fornara DA, Tilman D, Hobbie SE (2009) Linkages between plant functional composition, fine root processes and potential soil N mineralization rates. Journal of ecology 97:48–56. https://doi.org/10.1111/j.1365-2745.2008.01453.x
CAS
Article
Google Scholar
Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends in Ecology & Evolution 25:372–380. https://doi.org/10.1016/j.tree.2010.01.010
Article
Google Scholar
Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen–host range. Proceedings of the National Academy of Sciences 104:4979–4983. https://doi.org/10.1073/pnas.0607968104
CAS
Article
Google Scholar
Gonzalez-Menendez V et al (2017) Biodiversity and chemotaxonomy of Preussia isolates from the Iberian Peninsula. Mycol Prog 16:713–728
Article
Google Scholar
Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry 30:369–378. https://doi.org/10.1016/S0038-0717(97)00124-7
CAS
Article
Google Scholar
Griffith G. W, Roderick K (2008) Saprotrophic basidiomycetes in grasslands: distribution and function. In: Boddy L, Frankland JC, van west P (eds) British mycological society Symposia series, vol 28. Academic press, pp 277-299. doi:https://doi.org/10.1016/S0275-0287(08)80017-3
Hättenschwiler S, Tiunov A. V, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems annual review of ecology, Evolution, and Systematics:191–218
Helaly SE, Thongbai B, Stadler M (2018) Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 35:992–1014
CAS
PubMed
Article
Google Scholar
Hellwig V, Ju Y-M, Rogers JD, Fournier J, Stadler M (2005) Hypomiltin, a novel azaphilone from Hypoxylon hypomiltum, and chemotypes in Hypoxylon sect. Mycol Prog 4:39–54. https://doi.org/10.1007/s11557-006-0108-6
Article
Google Scholar
Hobbie SE (1992) Effects of plant species on nutrient cycling. trends in ecology & evolution 7:336–339
CAS
Article
Google Scholar
Hodge A (2014) Chapter two - interactions between Arbuscular Mycorrhizal Fungi and organic material substrates. In: Sariaslani S, Gadd GM (eds) advances in applied microbiology, vol 89. Academic press, pp 47-99. doi:https://doi.org/10.1016/B978-0-12-800259-9.00002-0
Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411. https://doi.org/10.1007/bf00333714
CAS
PubMed
Article
Google Scholar
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Frontiers in Plant Science 8:1617. https://doi.org/10.3389/fpls.2017.01617
PubMed
PubMed Central
Article
Google Scholar
Jumpponen A, Jones KL, Blair J (2010) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia 102:1027–1041
PubMed
Article
Google Scholar
Kardol P, De Long J (2018) How anthropogenic shifts in plant community composition alter soil food webs [version 1; referees: 2 approved] F1000Research 7 doi:https://doi.org/10.12688/f1000research.13008.1
Kolarikova Z, Kohout P, Kruger C, Janouskova M, Mrnka L, Rydlova J (2017) Root-associated fungal communities along a primary succession on a mine spoil: Distinct ecological guilds assemble differently. Soil Biol Biochem 113:143–152
CAS
Article
Google Scholar
Lange M et al. (2015) Plant diversity increases soil microbial activity and soil carbon storage Nature communications 6
Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. https://doi.org/10.1007/s004420100716
Article
PubMed
Google Scholar
Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069
CAS
PubMed
Article
Google Scholar
Louis BP, Maron PA, Menasseri-Aubry S, Sarr A, Lévêque J, Mathieu O, Jolivet C, Leterme P, Viaud V (2016) Microbial Diversity Indexes Can Explain Soil Carbon Dynamics as a Function of Carbon Source. Plos One 11:e0161251. https://doi.org/10.1371/journal.pone.0161251
CAS
PubMed
PubMed Central
Article
Google Scholar
Lunghini D, Granito VM, Di Lonardo DP, Maggi O, Persiani AM (2013) Fungal diversity of saprotrophic litter fungi in a Mediterranean maquis environment. Mycologia 105:1499–1515
CAS
PubMed
Article
Google Scholar
Lyons JI, Newell SY, Buchan A, Moran MA (2003) Diversity of ascomycete laccase gene sequences in a southeastern US salt marsh. Microbial Ecology 45:270–281. https://doi.org/10.1007/s00248-002-1055-7
CAS
PubMed
Article
Google Scholar
Maltz MR, Treseder KK, McGuire KL (2017) Links between plant and fungal diversity in habitat fragments of coastal shrubland. Plos One 12:e0184991. https://doi.org/10.1371/journal.pone.0184991
CAS
PubMed
PubMed Central
Article
Google Scholar
McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Treseder KK (2010) Functional diversity in resource use by fungi. Ecology 91:2324–2332. https://doi.org/10.1890/09-0654.1
PubMed
Article
Google Scholar
Meier CL, Suding KN, Bowman WD (2008) Carbon flux from plants to soil: roots are a below-ground source of phenolic secondary compounds in an alpine. Ecosystem 96:421–430. https://doi.org/10.1111/j.1365-2745.2008.01356.x
CAS
Article
Google Scholar
Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics. Ecology 63:621–626. https://doi.org/10.2307/1936780
CAS
Article
Google Scholar
Möller M, Stukenbrock EH (2017) Evolution and genome architecture in fungal plant pathogens. Nature Reviews Microbiology 15:756–771. https://doi.org/10.1038/nrmicro.2017.76
CAS
PubMed
Article
Google Scholar
Mommer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel S, van de Mortel J, van der Paauw J, Schijlen EGWM, Smit-Tiekstra AE, Berendse F, de Kroon H, Dumbrell AJ (2018) Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol 218:542–553
PubMed
PubMed Central
Article
Google Scholar
Mueller KE, Tilman D, Fornara DA, Hobbie SE (2013) Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94:787–793. https://doi.org/10.1890/12-1399.1
Article
Google Scholar
Mujic AB, Durall DM, Spatafora JW, Kennedy PG (2016) Competitive avoidance not edaphic specialization drives vertical niche partitioning among sister species of ectomycorrhizal fungi. New Phytologist 209:1174–1183. https://doi.org/10.1111/nph.13677
Article
PubMed
Google Scholar
Nguyen NH et al (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Article
Google Scholar
Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytologist 165:273–283
Article
PubMed
Google Scholar
Oksanen J et al. (2018) vegan: Community Ecology Package. , R package version 2.5–2. edn.,
Oram NJ et al (2018) Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. Journal of Ecology 106:265–277. https://doi.org/10.1111/1365-2745.12877
CAS
Article
Google Scholar
Pellissier L et al (2014) Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Mol Ecol 23:4274–4290
CAS
PubMed
Article
Google Scholar
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50
CAS
PubMed
Article
Google Scholar
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Ravenek JM et al (2014) Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123:1528–1536
Article
Google Scholar
Roumet C et al (2016) Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826. https://doi.org/10.1111/nph.13828
PubMed
Article
Google Scholar
Santonja M et al (2017) Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology and Biochemistry 111:124–134. https://doi.org/10.1016/j.soilbio.2017.04.006
CAS
Article
Google Scholar
Schöps R et al (2018) Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Front Microbiol:9. https://doi.org/10.3389/fmicb.2018.02711
Schroeder-Georgi T, Wirth C, Nadrowski K, Meyer ST, Mommer L, Weigelt A (2016) From pots to plots: hierarchical trait-based prediction of plant performance in a Mesic grassland. Journal of Ecology 104:206–218. https://doi.org/10.1111/1365-2745.12489
Article
Google Scholar
Schuldt A et al. (2018) Biodiversity across trophic levels drives multifunctionality in highly diverse forests Nature Communications 9
Setälä H, M. A ML (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107. https://doi.org/10.1007/s00442-003-1478-y
PubMed
Article
Google Scholar
Siles JA, Margesin R (2016) Abundance and diversity of bacterial, Archaeal, and fungal communities along an altitudinal gradient in Alpine Forest soils: what are the driving factors? Microb Ecol 72:207–220. https://doi.org/10.1007/s00248-016-0748-2
PubMed
PubMed Central
Article
Google Scholar
Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419
PubMed
Article
Google Scholar
Spehn EM, Joshi J, Schmid B, Alphei J, Körner C (2000) Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant and Soil 224:217–230. https://doi.org/10.1023/A:1004891807664
CAS
Article
Google Scholar
Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and Lignin Content as Predictors of Litter Decay Rates: A Microcosm Test. Ecology 70:97–104. https://doi.org/10.2307/1938416
Article
Google Scholar
Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry 34:387–401. https://doi.org/10.1016/S0038-0717(01)00199-7
CAS
Article
Google Scholar
Unterseher M, Jumpponen A, Opik M, Tedersoo L, Moora M, Dormann CF, Schnittler M (2011) Species abundance distributions and richness estimations in fungal metagenomics--lessons learned from community ecology. Mol Ecol 20:275–285. https://doi.org/10.1111/j.1365-294X.2010.04948.x
PubMed
Article
Google Scholar
van Dam NM, Bouwmeester HJ (2016) Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication. Trends in Plant Science 21:256–265. https://doi.org/10.1016/j.tplants.2016.01.008
CAS
PubMed
Article
Google Scholar
van Ruijven J, Berendse F (2005) Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms proceedings of the National Academy of Sciences of the United States of America 102:695-700 doi:https://doi.org/10.1073/pnas.0407524102
Veen CGF, Snoek BL, Bakx-Schotman T, Wardle DA, van der Putten WH (2019) Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects functional. Ecology. https://doi.org/10.1111/1365-2435.13351
Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D (2006) Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters 9:1127–1135
PubMed
Article
Google Scholar
White T. M, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic, San Diego, CA, pp 315–321
Zajicek JM, Hetrick BAD, Owensby CE (1986) The Influence of Soil Depth on Mycorrhizal Colonization of Forbs in the Tallgrass Prairie. Mycologia 78:316–320
Article
Google Scholar
Zak D. R, Holmes W. E, White D. C, Peacock A. D, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? 84:2042-2050 doi:https://doi.org/10.1890/02-0433
Zhang F, Li L, Niu SB, Si YK, Guo LD, Jiang XJ, Che YS (2012) A Thiopyranchromenone and other Chromone derivatives from an Endolichenic fungus. Preussia africana J Nat Prod 75:230–237
CAS
PubMed
Article
Google Scholar